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Abstract. The monochromatic Dirac and polychromatic Titulaer–Glauber
quantized field theories (QFTs) of electromagnetism are derived from a photon-
energy wave function in much the same way that one derives QFT for
electrons, i.e., by quantization of a single-particle wave function. The photon
wave function and its equation of motion are established from the Einstein
energy–momentum–mass relation, assuming a local energy density. This yields a
theory of photon wave mechanics (PWM). The proper Lorentz-invariant single-
photon scalar product is found to be non-local in coordinate space, and is shown
to correspond to orthogonalization of the Titulaer–Glauber wave-packet modes.
The wave functions of PWM and mode functions of QFT are shown to be
equivalent, evolving via identical equations of motion, and completely describe
photonic states. We generalize PWM to two or more photons, and show how
to switch between the PWM and QFT viewpoints. The second-order coherence
tensors of classical coherence theory and the two-photon wave functions are
shown to propagate equivalently. We give examples of beam-like states, which
can be used as photon wave functions in PWM, or modes in QFT. We propose
a practical mode converter based on spectral filtering to convert between wave
packets and their corresponding biorthogonal dual wave packets.
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1. Introduction—photon wave mechanics (PWM)

There are still many puzzling aspects of the nature of light. A central point to understand is the
distinction between a corpuscular viewpoint and a field viewpoint of light. In the old days, this
was called wave-particle duality, but this phrase does little justice to the subtle issues involved.
A key question is, can we view light as being comprised of particles calledphotons, or must
one view light as a field, and the ‘number of photons’ only as the name we give to quantum
states of the electromagnetic field [1]? Certainly, one can create single-photon wave packets,
which are more or less localized in space-time, and we can describe them using standard
quantum field theory (QFT) [2]–[4]. In some papers, authors ask questions such as, which
path did the photon take through my interferometer? What slit did the photon go through?
With sophistication, such questions can properly refer to alternative quantum amplitudes that
contribute to the final amplitude for detection. These questions, however, presuppose that
we know how to write down formula for photon wave functions (PWFs) to represent these
alternatives, along with a proper quantum wave equation for the PWF. Most papers fail to
do that, yet many continue to use the photon-as-particle language loosely or sometimes even
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sloppily. In cases where we care only about which beam a photon follows as it traces its
way through an interferometer made of beam splitters and mirrors, such a coarse language
is probably fine [5, 6]. On the other hand, when a problem involves light diffraction, ultrashort
pulses, or other spatially complex phenomena, one needs to use a more refined theory based on
a photon wave equation.

It is known that one can describe single-photon states of light using a photon-as-particle
viewpoint, specifying the PWF. We call this approach photon wave mechanics (PWM).
Nevertheless, not all quantum optics researchers are well versed in the techniques for handling
single-photon wave packets and PWFs. Also, some of the deeper connections between PWFs,
quantized-field wave packets, and optical coherence theory have not been previously reported.
These concerns motivate the present paper.

A main theme of this paper is that there is utility in being able to switch correctly
between a photon viewpoint and a field viewpoint. We begin by reviewing and extending
the QFT of photon wave packets introduced by Titulaer and Glauber (T–G) [7]. We then
briefly review the theory of the ‘energy-density photon wave function’ in coordinate space,
which has developed over the past dozen years [8]–[11], and we extend it in several ways. We
show that both the QFT of light developed by Dirac [12], based on monochromatic modes,
as well as its generalization to non-monochromatic modes developed by T–G, can be derived
directly from the photon-as-particle viewpoint. This actually provides a ‘derivation’ of the
Maxwell equations, starting from fundamental principles. One does this by considering the
relativistic particle kinematics of a single photon, and finding a formulation for a single photon
that is analogous to the Dirac equation for an electron, which turns out to have the same
form as Maxwell’s equations. We then quantize this single-photon theory to create a QFT of
light. The derivation parallels to that of Dirac for the electron and its quantum field [13, 14].
A key difference between the electron and photon derivations has to do with the famous
localization problem for the photon [15]. Whereas (non-relativistic) electrons can be in a
position eigenstate, at least in principle, a photon cannot. On the other hand, the energy density
of the electromagnetic field in free space can be expressed as a local quantity,E2(x)+ c2B2(x).
Therefore, as well argued by Bialynicki-Birula [8]–[10] and by Sipe [11], for photons it is best to
adopt a wave function whose modulus squared is the photon’s mean energy density, rather than
being a position probability density, as is the case for electrons. We call this themean-energy-
density wave functionor the Bialynicki-Birula–Sipe (BB–S) wave function and its equation of
motion thephoton wave equation. A connection of PWM to experiments can be seen in the
authors’ determination of transverse spatial PWFs at the single-photon level [16].

The wave functions (states) of a single photon, when treated as a particle-like object,
are found to be equivalent to the mode functions of the quantized electromagnetic field. This
field is conveniently expressed in terms of the complex electromagnetic field,E + icB. This is
also called the Riemann-Silberstein (RS) vector field [10]. Conversely, the QFT for light is
constructed by quantizing the single-photon wave function. When the connections between
the different formalisms are understood, it can be seen that there are at least two ways of
interpreting the PWF theory. One interpretation is as a theory of quantum particles [17]. The
other is to interpret PWF theory as an alternative means for describing states and dynamics of
the quantum field in the case that we can restrict the description to a fixed subspace of the larger
Fock space of photon numbers. Then, there is a clear relation between the PWF and the mode
functions that appear in the state description of the quantum field. A subtlety arises when treating
the Hilbert-space scalar product for PWFs. We present the Lorentz-invariant scalar product
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of the PWF, which is non-local in the coordinate representation. This form of scalar product
can also be used to better interpret, understand, and utilize the T–G wave-packet quantization
formalism.

After showing how to switch from a photon viewpoint to a field viewpoint by quantization
of the single-photon wave mechanics theory, we show how to switch in the opposite direction.
That is, starting from conventional Dirac–Titulaer–Glauber QFT for light, we can extract the
correct forms for PWFs and their equations of motion in coordinate space. This connects to
similar treatments by Muthukrishnanet al [18], Lapaire and Sipe [19] and by Eberly and co-
workers [3, 4]. This result shows how to incorporate interactions between light and matter in the
photons viewpoint. A related example is that of Finiet al [20], who formulated the propagation
of intense solitons in a Kerr third-order non-linear optical medium in terms of the coordinate-
space wave functions of many photons.

Single-photon spatial-temporal states can be used for a non-monochromatic wave-packet
basis set in which to expand the electromagnetic field in QFT. As an example of this, we
introduce a basis set of beam-like wave-packet modes with broad spectra. Such wave-packet
modes are not orthogonal under the standard, local, coordinate-space scalar product, but are
orthogonal under the non-local scalar product arising in PWM. The closely related concept of
the dual-mode basis is discussed in terms of orthogonalization of the T–G wave-packet modes,
and leads directly to the non-local scalar product. We propose an experimental scheme to convert
between wave packet modes and their dual modes through a spectral-filtering scheme similar to
a pulse shaper.

We extend the single-photon wave mechanics by developing two-photon andn-photon
wave mechanics [21]. We show that there are deep connections between this extended
PWM theory and optical coherence theory—both quantum and classical. These connections
are shown to be related to standard photodetection theory and to the standard wave-
function collapse hypothesis. We also present a description of entanglement in the state of
two photons, and the correct method for reduction of a pure two-photon wave function
state to a single-photon density matrix written in terms of single-photon wave functions.
Here the non-local scalar product plays a crucial role in eliminating information about the
traced-out photon.

2. From monochromatic modes to wave-packet modes

We first develop the theory of photon wave packets in terms of QFT. The quantized
electromagnetic theory developed by Dirac [12] starts from the classical Maxwell theory of
the electromagnetic field, which is canonically quantized in terms of monochromatic modes. In
free space, the electric and magnetic-induction field operators obey the Maxwell equations, in
SI units4,

∂t Ê(x, t)= c2
∇ × B̂(x, t), ∇ · Ê(x, t)= 0,

(1)
∂t B̂(x, t)= − ∇ × Ê(x, t), ∇ · B̂(x, t)= 0.

4 We ‘derive’ the Maxwell equations in section4.

New Journal of Physics 9 (2007) 414 (http://www.njp.org/)

http://www.njp.org/


5

The positive-frequency parts of the fields may be expanded using monochromatic modes
as [12], [22]–[25]

Ê(+)(x, t)= i
∑
σ

∫
d3k

(2π)3

(
h̄ck

2ε0

)1/2

âk,σuk,σ (x)exp(−iωkt), (2)

B̂(+)(x, t)= i
∑
σ

∫
d3k

(2π)3

(
h̄ck

2ε0

)1/2

âk,σ

(
k
ck

× uk,σ (x)
)

exp(−iωkt), (3)

whereωk = ck = c|k|, c is the vacuum speed of light, andε0 is the permittivity of the vacuum.
The monochromatic, orthonormal, plane-wave modes are

uk,σ (x)= ek,σexp(ik · x), (4)

where theek,σ are unit polarization vectors. The sum is over the two mode-polarization
indicesσ = ±1. It turns out to be advantageous to assume circular polarization for modes
(corresponding to positive and negative helicity), so we do this throughout this paper. For
circular polarization

k × ek,σ = −iσ |k| ek,σ , (5)

although we prefer not to invoke this here, in order to keep (3) general. An advantage of
using the plane-wave modesuk,σ (x) is that they are orthogonal under the standard definition
of the scalar product, which hereafter we call theoverlap integral, and denote it by( | ). This is
given by (

uk,σ

∣∣uk′,σ ′

)
=

∫
uk,σ (x)∗ · uk′,σ ′ (x)d3x = (2π)

3
δ(3)

(
k − k ′

)
δσ,σ ′ . (6)

The Hermitian field operators are

Ê(x, t)= Ê(+)(x, t)+ Ê(−)(x, t), B̂(x, t)= B̂(+)(x, t)+ B̂(−)(x, t), (7)

where the negative-frequency parts are given by Hermitian conjugates of the positive-frequency
operators,̂E(−)(x, t)= [Ê(+)(x, t)]† andB̂(−)(x, t)= [B̂(+)(x, t)]†. The monochromatic annihila-
tion and creation operatorsâk,σ andâ†

k,σ obey the bosonic commutation relations[
âk,σ , â

†
k′,σ ′

]
= (2π)3δ(3)(k − k ′)δσ,σ ′ . (8)

Excitation-number operators aren̂k,σ = â †
k,σ âk,σ . (We refrain from using the wordphotonhere.)

The electromagnetic-field Hamiltonian operator is expressed in terms of the annihilation and
creation operators as

Ĥ =

∑
σ

∫
d3k

(2π)3
h̄ωkâ †

k,σ âk,σ , (9)

where we follow the common practice of neglecting the infinite vacuum energy term. The
interaction of the quantized electromagnetic field with atomic systems can be introduced
through an interaction term (usually the electric-dipole interaction in non-relativistic treatments)
in the atom-field Hamiltonian.

The free-space field operators in equations (2) and (3) are expressed in terms of plane
waves, which serve well for simple models. However, when localized space-time interactions
are considered, such as spontaneous emission from an atom [4, 11], the plane-wave description
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becomes inefficient. In such a case, T–G showed that one may expand the electric and magnetic
fields in terms of non-orthogonal, non-monochromatic, spatial-temporal modesv j,σ (x, t) [7].
Such modes were used to study transient Raman scattering [26], and have been recently
disscussed in terms of the transverse spatial modes of light [27]. These wave-packet modes
are related to the orthogonal, monochromatic, plane-wave modes through the non-unitary
transformation

v j,σ (x, t)= i
( h̄c

2ε0

)1/2
∫

d3k

2π3

√
k Uσ

j (k)uk,σ (x)exp(−iωkt), (10)

in which U (σ )

j (k) is a unitary tranformation ‘matrix.’ Equation (4) shows that this relation is a
Fourier transform, which can be inverted to give

U (σ )

j (k)ek,σ =

(
2ε0

h̄c

)1/2

exp(iωkt)
1

i
√

k

∫
d3x v j,σ (x, t)exp(−i k · x) . (11)

We callv j,σ (x, t) the wave-packet (WP) modes. The ‘matrix’U (σ )

j (k) is unitary, that is, for fixed
value ofσ ,∑

j

U (σ )

j (k ′)∗ U (σ )

j (k)= (2π)3δ(3)(k ′
− k),

∫
d3k

(2π)3
U (σ )

j (k)U (σ )

j ′ (k)
∗
= δ j j ′ . (12)

Nevertheless, the relation between the WP modes and the monochromatic modes is not unitary
because of the

√
k factor in (10). This turns out to be a crucial point.

The annihilation and creation operators are changed by the unitary tranformation leading
to new annihilation and creation operatorsb̂ j,σ andb̂†

j,σ given by

b̂ j,σ =

∫
d3k

(2π)3
U σ

j (k)
∗âk,σ , (13)

which obey bosonic commutation relations [b̂ j,σ , b̂†
m,ρ] = δ j,mδσ,ρ. This means that one can

construct states of definite excitation numberN in a particular WP mode by applying the
creation operator to the vacuum state:(b̂†

j,σ )
N
|vacuum〉 = |N〉 j,σ . The inverse of (13) is

âk,σ =

∑
j

U (σ )

j (k)b̂ j,σ . (14)

In terms of the WP modes, the positive-frequency parts of the electric and magnetic field
operators are

Ê(+)(x, t)=

∑
j,σ

b̂ j,σ v j,σ (x, t), (15)

B̂(+)(x, t)=

∑
j,σ

b̂ j,σ

(
k j

c
∣∣k j

∣∣ × v j,σ (x, t)

)
. (16)

The monochromatic plane-wave basis functionsuk,σ (x) are orthogonal under the standard
definition of the scalar product, that is, the overlap integral (6). In contrast, the WP modes
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v j,σ (x, t), do not generally form an orthogonal set under a scalar product defined by the overlap
integral5. That is,(
v j,σ

∣∣ vm,σ

)
=

∫
v j,σ (x, t)∗ · vm,σ (x, t)d3x =

h̄c

2ε0

∫
d3k

(2π)3
kU(σ )

j (k)∗U (σ )
m (k) 6= δ j m. (17)

The non-orthogonality arises from different weightings given to different frequency components
by the

√
k factor in (10). In fact, the WP modes are overcomplete, which might appear to be a

disadvantage of using a WP expansion. However, as we next show, this may be overcome by
defining a new scalar product for the WP modes. This also leads to a crucial link between the
WP modes and PWFs, treated in the next section.

Our extension of the T–G formalism rests on the definition of a new scalar product, under
which the WP modes form an orthonormal set. To find the form of this scalar product, we
introduce the well-known concept of a dual basis [28]. For every WP modev j,σ (x, t), we
introduce a dual modevD

j,σ (x, t), such that(
vD

j,σ |vm,ρ

)
= δ jmδσρ. (18)

In the present case, the dual modes are given by

vD
j,σ (x, t)= i

(
2ε0

h̄c

)1/2 ∫ d3k

(2π)3
1

√
k

U (σ )

j (k)uk,σ (x)exp(−iωkt). (19)

This is nearly the same as (10), except that the
√

k is in the denominator of the integrand and
we have inverted the constant factor(h̄c/2ε0)

1/2.6 The overlap integral between any dual mode
and a wave-packet mode is(

vD
j,σ |vm,ρ

)
=

∫
vD

j,σ (x, t)
∗
· vm,ρ(x, t)d3x = δ jmδσρ. (20)

That is, the dual modes and the wave-packet modes form a biorthogonal basis system under a
scalar product defined by the overlap integral. Therefore, the projection of the field on to a mode
v j,σ (x, t) is accomplished by integration of the positive-frequency part of the field dotted with
its complex-conjugate dual modevD

j,σ (x, t)
∗, that is,∫

vD
j,σ (x, t)

∗
· Ê(+)(x, t)d3x = b̂ j,σ . (21)

Each dual mode can be expressed as an integral over the corresponding wave-packet mode
v j,σ (x, t). Inserting (11) into (19) gives

vD
j,σ (x, t)=

∫
v j,σ (x′, t)K (x − x′)d3x′, (22)

where the kernel is (see appendix A)

K (x)=
2ε0

h̄c

∫
d3k

(2π)3
exp(i k · x)

k
=

2ε0

h̄c

1

2π2

1

|x|
2 . (23)

Thus, we can rewrite (20) as(
vD

j,σ

∣∣ vm,ρ

)
=

∫
d3x

∫
d3x′ v j,σ (x′, t)∗ · vm,ρ(x, t) K (x − x′)= δ j mδσρ. (24)

5 The wave-packet modes are also non-orthogonal under the integral
∫∫

d3x dt .
6 Note that the dual modes are proportional to the wave-packet modes used for expanding the vector potential.
This provides a link to the formalism of Hawton and Melde [29].
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This shows that we can define a new form of scalar product for the wave-packet modes,
under which the wave-packet modes are orthogonal. We denote this new scalar product by (‖),
where(
v j,σ

∥∥∥vm,ρ

)
≡
(
vD

j,σ

∣∣ vm,ρ

)
=

ε0

h̄cπ2

∫
d3x

∫
d3x′

v j,σ (x, t)∗ · vm,ρ(x′, t)

|x − x′|
2 = δ j mδσρ. (25)

Such an integral is callednon-localbecause the mode value at one point is multiplied by values
of the other mode at every spatial point. Equation (25) is just another way to represent (24),
but it has important meaning when discussing PWFs in the subsequent sections. In fact, the
same form of scalar product was first introduced precisely in the context of PWFs [30]. The
present paper is, to our knowledge, the first to apply this form of scalar product in the context
of wave-packet field quantization.

An important state of light is that in which a single excitation occurs in a given spatial-
temporal-localized packet. An example is the deterministic generation of a single photon from
an atom in a cavity-QED system [2]. If the packet is dispersed spectrally by a prism and detected
by an array of photon counters, only one counter will click, although which one clicks will be
random. Such a state is expressed as

|1〉 j,σ = b̂†
j,σ |vacuum〉 =

∫
d3k

(2π)3
U (σ )

j (k) |1〉k,σ , (26)

where|1〉k,σ is a state with a single excitation having particular monochromatic wave vector-
polarization state labeled by the pair (k, σ ). We see that the functionU (σ )

j (k) fully specifies the
state.

The simplest example one might construct to illustrate the use of the wave-packet modes
and the new scalar product (25), is a complete set of modes representing propagation in one
dimension (1D). This case runs into subtleties, because of the continuous nature of thek
variable. These subtleties are familiar for non-normalizable modes in the continuum limit, such
as infinite plane waves or Bessel beams. We defer the details of this discussion until after we
have derived the PWF formalism.

3. Deriving the single-photon wave equation from Einstein kinematics

In the previous section, we reviewed the standard Dirac quantum theory of electromagnetism
[12], in which the classical Maxwell fields are raised to the status of operators acting on
a Hilbert space—the state space of the electromagnetic field—but still obey the Maxwell
equations. This is in contrast to the traditional quantum treatment of the electron, in which
the single-particle wave function is first introduced to describe the relativistic evolution of one
electron [13, 14]. This is then followed by quantization of the relativistic Dirac equation for a
single particle, by elevating the wave function to the status of an operator. It is also common to
omit the single-particle description, and develop the full QFT from the beginning [31]–[34]. In
this section, we aim to show that the traditional particle-like approach may also be applied to
the case of the photon.

Here, we temporarily ‘forget’ all that we discussed in section2, and begin by paralleling
Dirac’s approach to determining the wave equation for the single electron, a spin-1/2 particle,
from Einstein kinematics. By this straightforward route, we arrive at the equation of motion for
the wave function of the zero-mass, spin-1 photon, which is the same as found by other authors
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[8]–[11]. We discuss the normalization and scalar product of the PWF, noting that the scalar
product must be a non-local integral in coordinate space of the form in (25) to ensure a local
energy density in coordinate space. Finally, we quantize this single-particle theory in much the
same way as the Dirac theory of the electron is quantized in terms of creation and annihilation
operators. By determining the energy eigenstates of the photon energy operator, we discover the
connection between the quantized single-photon theory and the monochromatic-mode Dirac
theory of electromagnetism.

We start from the Einstein energy–momentum–mass relationship

E =
(
c2

|p|
2 + m2c4

)1/2
, (27)

which Dirac used to derive his wave equation for the electron [13]. For the photon, the mass is
m = 0, so the energy is given in terms of the momentum,

E = c
√

p · p. (28)

Our rationale in this part of the derivation [35] is closest to that of Sipe [11], who also
started from the particle-like equation (28), whereas Bialynicki-Birula [8]–[10] started from
the Maxwell equations describing light as a wave. Note that the number of wave-function
components for a spin-j particle, j = 0,1/2,1,3/2, . . ., is given byn = (2 j + 1), which arises
from the general treatment of rotations in 3D [17]. Assuming that the photon is a spin-1 particle,
from empirical evidence, this leads to a three-component wave function for a photon of definite
helicity.

Starting in the energy-momentum representation, where a momentum-space wave function
can be well defined, we introduce a three-component (vector) momentum-space wave function
ψ̃(p). As for any vector field,̃ψ(p) can be separated into transverse and longitudinal parts [25]

ψ̃ (p)= ψ̃ (T) (p)+ ψ̃ (L)(p), (29)

obeying
p · ψ̃ (T)(p)= 0, p × ψ̃ (L)(p)= 0. (30)

We follow the standard approach in quantum theory and assume that (28) is the dispersion
relation for some first-order-in-time wave equation, which we wish to determine. To find it [35],
we multiply (28) by the wave functioñψ(p) to give

E ψ̃(p)= c
√

p · p ψ̃(p). (31)

Substituting (29) into (31) shows that the transverse and longitudinal parts evolve independently
in free space. We then make use of the vector identity

p × p × ψ̃ (T)(p)= −p · pψ̃ (T) + p
(
p · ψ̃ (T)

)
= −p · pψ̃ (T) (32)

to write the equation for the transverse part as7

Eψ̃ (T)(p)= ±icp × ψ̃ (T)(p). (33)

We now drop the ‘T’ superscript, and interpret this equation as an energy-eigenvalue equation,

H ψ̃σ (p)= Eψ̃σ (p), (34)

7 The requirement to find a first-order-in-time wave equation has forced us to discard the longitudinal part of the
field, at least for evolution in free space. When interactions with charged particles are considered, the longitudinal,
near-field part may come back [36].
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where we have introduced the indexσ = ±1, which we will see corresponds to the helicity of
the photon. The Hermitian Hamiltonian operator is defined as

H = icσp×. (35)

Note thatH also depends on the value ofσ when treating the two helicities separately.
This equation can be put into a form that more closely resembles the Dirac equation

with spin dependence [8, 11]. Note the following feature of the spin-1 matrices and vector
cross product,a× b = −i(a · s)b, wherea and b are ordinary three-component vectors, and
s= (sx, sy, sz) is a three-component vector composed of the three spin-1 matrices (generators
of rotations for spin-1 particles)

sx =

0 0 0
0 0 −i
0 i 0

 , sy =

 0 0 i
0 0 0
−i 0 0

 , sz =

0 −i 0
i 0 0
0 0 0

. (36)

This leads to the following form of the photon Hamiltonian in terms of the spin matrices

H = icσp× = cσ(s· p), (37)

and the corresponding momentum-space wave equation

Eψ̃σ (p)= cσ(s· p)ψ̃σ (p)= c |p| ψ̃σ (p). (38)

The helicity dependence is now explicitly present, as can be seen by noting that the helicity
operator, the projection of the spin on to the direction of propagation, is

ĥ =
p
|p|

· s. (39)

In general, one must treat both helicities on equal footing, which can be done by creating a
six-component, spinor wave function [8]–[10]. However, in free space the helicities do not mix,
so in this case we can treat each helicity independently.

The task is to transform (38) into a coordinate-space wave equation in a way that clearly
represents the known physics of photons. The interpretation of the momentum-space PWF
ψ̃σ (p), introduced above, must be addressed prior to transforming to coordinate space. The
momentum-space wave functioñψσ (p) is typically interpreted as the probability amplitude
in momentum space. This means that|ψ̃σ (p)|2d3 p(2π h̄)−3 gives the probability of finding a
photon (anywhere in space) with helicityσ , and momentum in a momentum-space volume
d3 p aboutp. The proper normalization for normalizable momentum-space wave functions is
thus [11, 17]8

(ψ‖ψ)=

∑
σ

∫
d3 p

(2π h̄)3
ψ̃σ (p)†ψ̃σ (p)= 1. (40)

We use the notation (ψ ‖ ψ) for the norm to remind us that this might not correspond to an
overlap integral of the form (6) when written in coordinate space. (The dagger indicates complex
conjugation as well as vector transposition; therefore we need no explicit ‘dot’ operator as we

8 This is Sipe’s convention [11]. One can adopt different conventions for this normalization, such as∑
σ

∫
d3 p |p|

−1(2π h̄)−3ψ̃BB
σ (p)†ψ̃BB

σ (p)= 1, as in appendix B and in [8]–[10]. This changes the definition of the
wave function to the form used by Bialynicki-Birula:ψ̃BB

σ (p)=
√

c |p| ψ̃σ (p).
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used in the previous section for mode functions.) For eigenstates of momentum and helicity,
ψ̃p,σ , which are not normalizable, (40) is replaced by(

ψ̃p′,σ ′

∥∥∥ ψ̃p′′,σ ′′

)
=

∫
d3 p

(2π h̄)3
ψ̃p′,σ ′(p)†ψ̃p′′,σ ′′(p)= δσ ′σ ′′ δ(3)(p′

− p′′), (41)

from which we infer

ψ̃p′,σ ′(p)= (2π h̄)3/2 ep′,σ ′ δ(3)(p − p′). (42)

In standard non-relativistic quantum mechanics for massive particles, momentum-space
wave functions and coordinate-space wave functions, which are interpreted as probability
amplitudes in coordinate space, are related by Fourier transforms. However, it is well known
that photons, being inherently relativistic particles, are not localizable and have no well-defined
coordinate-space eigenstates [15]. Thus one maynot interpret the Fourier transform of̃ψσ (p),
given by

ψLP
σ (x, t)=

∫
d3 p

(2π h̄)3
exp

[
i (p · x − c |p| t) /h̄

]
ψ̃σ (p), (43)

as a coordinate-space wave function9. Nonetheless, this has been done in the past and
interpreted, albeit not very usefully, as the PWF [37]–[40]. We have denoted this ‘wave function’
with the superscript ‘LP’ for Landau and Peierls, the first to propose this form as a candidate
for a photon wave function in coordinate space. There are several reasons for not choosing
this function as the true single-photon wave function, including that this function is non-
locally connected10 to the classical electromagnetic field [10, 17], it does not transform as any
geometric object under Lorentz transformations, and it behaves non-causally when considering
spontaneous emission by an excited atom [10, 11, 41]. However, in the quasi-monochromatic
approximation this theory can be used to simplify some calculations [4].

To obtain the coordinate-space representation of (38), we weight the Fourier transformation
with a function f (|p|) of the magnitude of the momentum (equivalently, the energy) [11]. This
leads to the following wave function form

ψσ (x, t)=

∫
d3 p

(2π h̄)3
exp

[
i(p · x − c |p| t)/h̄

]
f (|p|)ψ̃σ (p), (44)

where the functionf (|p|) is yet to be determined. Using (38), the wave equation obeyed by any
function of the form in (44) is found to be11

ih̄∂tψσ (x, t)= h̄cσ ∇ ×ψσ (x, t), (45)

or equivalently,

ih̄∂tψσ (x, t)= −ih̄cσ(s· ∇)ψσ (x, t), (46)

9 Equation (43) is valid for non-relativistic electrons because〈x|p〉 = exp(−ip · x/h̄) provides a relation between
momentum eigenstates and position eigenstates, whereas the latter do not exist for photons. This is only
approximately valid for a non-relativistic electron where its speed is much less thanc.
10 By non-locally connected we mean that two functionsf andg are related byf (x)=

∫
g(x′)J(x, x′)dx′, for

some non-delta-function kernel functionJ(x, x′).
11 Planck’s constant cancels from both sides of this equation of motion, although it reappears when one calculates
energy-related quantities.
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along with the implied zero divergence. This is the correct Schrödinger-like equation for the
coordinate-space wave function of a single photon with a fixed helicity. We call this thephoton
wave equation. However, it provides no useful physics unless we can judicially choose the form
of the weighting functionf (|p|), which determines the interpretation of the coordinate-space
wave function.

A rigorous way to ascertain the weighting functionf (|p|) is to consider the form of the
energy expectation value in coordinate space. Consistent with standard atomic physics and
quantum optics, we choose to require that there exist a local energy density describing light. We
thus require the energy expectation value to be an integral of a localized quantity in coordinate
space. In momentum space, the energy expectation value is simply given by

〈Ĥ〉 =

∑
σ

∫
d3 p

(2π h̄)3
ψ̃σ (p)†Ĥ ψ̃σ (p)=

∑
σ

∫
d3 p

(2π h̄)3
c |p| ψ̃σ (p)†ψ̃σ (p). (47)

To determine the form of the energy expectation value in coordinate space, we first invert the
weighted Fourier transform (44). This gives the momentum-space wave function in terms of the
coordinate-space wave function

ψ̃σ (p)=
1

f (|p|)

∫
d3x exp

[
−i(p · x − c |p| t)/h̄

]
ψσ (x, t). (48)

When transformed to coordinate space the energy expectation value, equation (47), thus
becomes

〈Ĥ〉 =

∑
σ

∫
d3x

∫
d3x′ψσ (x, t)†ψσ (x′, t)

∫
d3 p

(2π h̄)3
c |p|

| f (|p|)|2
exp

[
i p · (x − x′)/h̄

]
. (49)

In order for this expression of the energy expectation value to be local (i.e., an integral over
a local energy density), the square modulus of the weight function must cancel out thec|p|

in (49), yielding a Dirac delta function. This gives a local expression for the coordinate-space
energy expectation value

〈Ĥ〉 =

∑
σ

∫
d3xψσ (x, t)†ψσ (x, t). (50)

Thus, we see that the weight function is given by

f (|p|)=
√

c |p| =
√

E. (51)

As stated above, the single-photon wave function in momentum spaceψ̃σ (p) is the
probability amplitude for finding the photon with polarization (helicity)σ and momentump.
The probabilistic interpretation of quantum mechanics requires a definition of a scalar product
between two different statesφ andψ , denoted by (φ ‖ ψ), which is used in calculating transition
probabilities. The Born rule states that the modulus squared of the scalar product of two
normalized wave functions|(φ ‖ ψ)|2 is to be interpreted as the probability of observing a
photon ‘in’ stateφ when it is known to be described by stateψ . The probability is a real,
dimensionless number (a scalar), and thus must be invariant under any Poincaré transformation
(Lorentz boost plus translation and rotation). From (50), we see that the overlap integral
(standard scalar product) (6), cannot work since it gives the energy expectation value, which
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is not and should not be Lorentz invariant. Equations (40) and (41) imply that the scalar product
in momentum space is of the familiar form

( φ‖ψ)≡

∑
σ

∫
d3 p

(2π h̄)3
φ̃σ (p)†ψ̃σ (p). (52)

To determine the form of the coordinate-space scalar product corresponding to the momentum-
space scalar product in (52), we use the inverted form of the weighted Fourier transform (48).
Inserting this expression of the momentum-space wave function in the scalar product, equation
(52), we obtain the coordinate-space scalar product

(φ‖ψ)=

∫
d3x

∫
d3x′ φ(x, t)†ψ(x′, t)

∫
d3 p

(2π h̄)3
1

| f (|p|)|2
exp

[
i p · (x − x′)/h̄

]
=

∫
d3x

∫
d3x′ φ(x, t)†ψ(x′, t)G(x − x′), (53)

where the kernel functionG(x − x′) is given by

G(x − x′)=

∫
d3 p

(2π h̄)3
1

| f (|p|)|2
exp

[
i p · (x − x′)/h̄

]
=

∫
d3 p

(2π h̄)3
1

c |p|
exp

[
i p · (x − x′)/h̄

]
=

1

2π2h̄c

1

|x − x′|
2 . (54)

Here, the wave functions are defined with two components to include the state for both helicities,

ψ(x, t)≡

[
ψ+1(x, t)
ψ−1(x, t)

]
, (55)

that is, ψ(x, t) is a six-component object [10]. Note that the choice of weight function,
equation (51), ensures that the kernel functionG(x − x′) in (53) transforms as a Lorentz-scalar
function (see appendix C). The Lorentz-invariant scalar product is thus a non-local integral in
coordinate space, given by

(φ‖ψ)=
1

2π2h̄c

∫
d3x

∫
d3x′

φ(x, t)†ψ(x′, t)

|x − x′|
2 . (56)

For a normalizable state the norm in coordinate space is then

(ψ‖ψ)=
1

2π2h̄c

∫
d3x

∫
d3x′

ψ(x, t)†ψ(x′, t)

|x − x′|
2 = 1. (57)

The Lorentz invariance of the norm corresponds to the physical fact that one does not ‘create’
or ‘destroy’ photons simply by viewing a situation from a different inertial reference frame.

The scalar product (53) and norm (57) are non-local integrals, which is not surprising in
light of the well-known fact that there exists no such quantity as local photon number density.
In fact, it has been claimed that one of the few localizable quantities that can be associated with
a photon is its energy [10, 11]. For the photon, the momentum, angular momentum, and the
moment of energy are also local quantities [10]. It has been shown that for massless particles
with spin greater than one, even the energy is non-localizable [42].

For comparison, recall that in non-relativistic (Schrödinger)electron wave mechanics,
the overlap integral (6) is normalized to one. For electrons, one can interpretme|ψ(x, t)|2
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(or e|ψ(x, t)|2) as an average local mass (or charge) density. Since the electron rest massme

(or charge) is a constant, this function can be normalized to unity, as is usually done. For
photons, there is no mass density (nor a charge density), and we find the energy density to
be the appropriate local concept. Since the photon energy is not a constant, it makes no sense
from this viewpoint to look for a local number density that is normalized to one.

We conclude, then, that a single-photon state of light can be described as if a single particle
is present, whose state is described by the general wave function,

ψ(x, t)=

∑
j,σ

B j,σ ψ j,σ (x, t), (58)

where theB j,σ are expansion amplitudes and{ψ j,σ (x, t)} is a complete set of states that are
orthonormal with respect to the non-local scalar product defined in (52), that is,(

ψ j,σ

∥∥ψk,ρ

)
=

1

2π2h̄c

∫
d3x

∫
d3x′

ψ j,σ (x, t)†ψk,ρ(x′, t)

|x − x′|
2 = δ j kδσ ρ. (59)

Notice that, following [10], we use the wordstates(rather thanmodes) here for the functions
ψ j,σ (x, t), consistent with the usage for electrons.

The matrix element of any operator in a given basis{ψ j (x, t)} (suppressing the helicity
label) may be conveniently expressed in a form analogous to standard Dirac bra-ket notation as

(ψ j ‖Ô|ψk)=
1

2π2h̄c

∫
d3x

∫
d3x′

ψ j (x, t)†

|x − x′|
2 Ôψk(x′, t). (60)

Our notation(ψ‖Ô|ψ) emphasizes that the operatorÔ acts on the ket to its right,|ψ), while
the double-lined bra(ψ‖ indicates the linear functional(

ψ j

∥∥ • =
1

2π2h̄c

∫
d3x

∫
d3x′

1

|x − x′|
2ψ j (x′, t)†•, (61)

where• indicates any function ofx.
In many of the previous treatments of the PWF [37]–[40], [43] either the non-local

wave function (43), or the incorrect (non-Lorentz-invariant) scalar product, similar to (6), was
used. The LP wave function, equation (43) does not have a local interaction with charged
particles [10]. Thus the vanishing of the LP wave function at a given point does not imply
absence of interaction with a charge at that point. Although the proper energy-density wave
function is discussed in [43], the proper scalar product is not utilized. This approach [43] is
nearly identical to the course-grained photon number density approach of Mandel [44], in which
one may approximately localize a photon in a volume larger than its cubic wavelength. This
approach is also similar to that taken by Fedorovet al to describe spontaneous emission of a
photon from an atom and the resulting atom–photon entanglement [4]. Here the authors are
careful to note that their method is valid only for quasi-monochromatic light. Recent work
using a Lagrangian approach, rather than a Hamiltonian approach, has shown to be useful
for deriving conservation laws for single-photon states [45] and introducing interactions with
charged particles [36].
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4. Quantization of the single-photon wave function

We see a remarkable confluence between the form of the scalar product necessary for wave-
packet modes to be orthogonal and the form of the scalar product found for photon wave
functions (states). That is, equation (25) and (59) are identical in form. This recognition shows
that the non-local scalar product occurs naturally in two contexts. This also guides us to an
easy route for quantizing the single-photon theory to build up a QFT for describing states with
more than one photon present. This was described briefly in [10, 43, 46], and we go beyond that
discussion.

To construct a QFT of light, we raise the six-component PWFψ(x, t) in (58) to the status
of a field operator. Its equation of motion follows from the same algebra we applied to the PWF
introduced earlier in equation (31). We expand the wave function in a complete set of modes
{ψ j,σ (x, t)}, each obeying (45), which are orthonormal with respect to the non-local scalar
product in (59), and replace the expansion amplitudes by annihilation and creation operators,
b̂ j,σ andb̂†

j,σ . The photon-field operator is then defined as

9̂(x, t)=

∑
σ

9̂σ (x, t)=

∑
j,σ

b̂ j,σ ψ j,σ (x, t)+ H.c., (62)

where H.c. stands for Hermitian conjugate. The canonical boson commutation relations for the
b̂ j,σ andb̂†

j,σ operators are[
b̂ j,σ , b̂

†
k,ρ

]
= δ jkδσρ. (63)

Each helicity component of the field operator obeys the equation of motion

ih̄∂t9̂σ (x, t)= h̄cσ ∇ × 9̂σ (x, t). (64)

We next show that this theory, equations (62)–(64), is equivalent to the extended T–G
version of QFT we discussed earlier (compare to (15) and (16)), with the single-photon basis
statesψ j,σ (x, t) playing the same role as played by the wave-packet modesv j,σ (x, t) in the T–G
theory. This is a main result of the present paper. To make the correspondence clear, first note
that if we break each basis state into real and imaginary parts,

ψ j,σ (x, t)= ψR
j (x, t)+ i σ ψ I

j (x, t), (65)

they obey the coupled wave equations

∂tψ
R
j (x, t)= c∇ ×ψ I

j (x, t), ∂tψ
I
j (x, t)= −c∇ ×ψR

j (x, t), (66)

as can be seen by separating the complex wave equation (45) into two real equations. Along
with the implicit zero-divergence conditions,

∇ ·ψR
j (x, t)= ∇ ·ψ I

j (x, t)= 0, (67)

equations (66) and (67) are identical in form to the free-space Maxwell equations, with the real
part of the PWF playing the role of the electric field and the imaginary part of the PWF playing
the role of the magnetic-induction field (multiplied byc). This might be seen as remarkable,
since it implies that Maxwell in 1864 found the relativistic quantum wave equation for single
photons, but, of course, did not realize it.

If we analogously break the photon field operator9̂σ (x, t) into ‘real’ and ‘imaginary’
Hermitian parts,

9̂σ (x, t)=

(ε0

2

)1/2
[Ê(x, t)+ iσcB̂(x, t)], (68)
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then, from equations (64) and (68), and the zero-divergence condition, we derive equations
identical to (1), i.e. the Maxwell equations. So, the real and imaginary parts of the operator
9̂σ (x, t) equal the quantized electric and magnetic field operators in the standard QFT. The
complex sum of electric and magnetic fields in (68) is called the RS vector, and has many useful
properties [10, 46, 47].

A difference between the present field quantization (62) and the familiar Dirac QFT is
that in (62) we use non-monochromatic, wave-packet modes as the space-time basis, whereas
Dirac used monochromatic modes. Since we have already seen that the single-photon basis
statesψ j,σ (x, t) play the same role as played by the wave-packet modesv j,σ (x, t) in the T–G
theory, we conclude that we have derived the latter directly, by starting from the single-photon
dynamics represented by (28), and quantizing this single-photon theory. This is a novel way to
derive QFT for light.

Before we study further ramifications, we wish to show how to convert the present T–G
QFT (62) into the more familiar Dirac version, which uses monochromatic modes. The mode
functions{ψ j,σ (x, t)}, are in general non-monochromatic, that is they are not energy eigenstates.
They are orthonormal under the non-local scalar product defined in (59). To find the relationship
between the monochromatic Dirac and T–G theories, we must find the energy eigenstates of the
derived T–G theory. Here, we consider a fixed value of helicityσ and suppress it in the notation.
One may always treat the two helicity sets separately when considering free-space propagation.
To find the energy eigenstates, we define an energy matrix in a particular basis{ψ j (x, t)}, with
non-zero off-diagonal elementsH jk, as

H jk =

(
ψ j ‖Ĥ |ψk

)
=

1

2π2h̄c

∫
d3x

∫
d3x′

1

|x − x′|
2ψ j (x′, t)†Ĥ ψk(x, t)

=
1

2π2h̄c

∫
d3x

∫
d3x′

1

|x − x′|
2ψ j (x′, t)† (−ih̄cs· ∇) ψk(x, t)

=

∫
d3xψ j (x, t)†ψk(x, t)=

(
ψ j |ψk

)
. (69)

Here, we have made connection with the earlier notation in (6) for the overlap integral on the last
line of (69). This form of the energy matrix is most easily verified by transforming to momentum
space. The last line in (69) again indicates that it is the mean energy densityψ j (x, t)†ψ j (x, t),
and not photon number, that is localized in coordinate space.

Because the Hamiltonian is Hermitian, we can diagonalize this matrix using a unitary
matrixU jk. This transforms the modes{ψ j (x, t)} to another set of modes{φ̃k(x, t)} given by

φ̃k(x, t)=

∑
j

U jkψ j (x, t), (70)

which are also orthonormal under the scalar product defined in (59). The operators are also
transformed, leading to new creation and annihilation operators,

âk =

∑
j

U †
jkb̂ j , (71)

and

â†
k =

∑
j

U jkb̂†
j , (72)

New Journal of Physics 9 (2007) 414 (http://www.njp.org/)

http://www.njp.org/


17

which also obey the standard, bosonic commutation relations[
â j , â

†
k

]
= δ jk. (73)

In this new basis, the energy matrix is diagonal, and (69) gives the energy matrix elements,

H jk =

(
φ̃ j

∣∣∣φ̃k

)
=

∫
d3x φ̃ j (x, t)†φ̃k(x, t)= h̄ω j δ jk, (74)

where we have introduced the eigen-frequenciesω j , such that h̄ω j equals the energy
eigenvalues. The energy eigenstates for each helicity obey the eigenvalue equation (restoringσ

in the notation)

Ĥ σ φ̃ j,σ (x, t)= h̄cσ ∇ × φ̃ j,σ (x, t)= h̄ω j φ̃ j,σ (x, t). (75)

One can easily verify that this eigenvalue equation (with the overlap given by (74)) is solved by
the following mode functions

φ̃ j,σ (x, t)= i

(
h̄ω j

2

)1/2 [
u j,σ (x, t)+ iσ

k j

k j
× u j,σ (x, t)

]
, (76)

where the vector PWFsu j (x, t), are given by

u j,σ (x, t)=
1

√
V

ek j ,σ exp
[
i
(
k j · x −ω j t

)]
. (77)

Here,k j are the wave vectors orthogonal to the transverse circular-polarization unit vectors
ek j,σ , andV is the quantization volume. In the continuum limit, these functions go to those given
in (4). The photon-field operator in (62) may thus be expressed as

9̂(x, t)=

∑
j,σ

φ̃ j,σ (x, t)â j,σ + H.c. (78)

Note that the energy-eigenstate basis functions (76), are orthogonal not only under the
non-local scalar product (59), but are also orthogonal with respect to the overlap integral,
equation (74).12 But they are not normalized to unity under (74). Therefore, we normalize them
to unity by dividing by(h̄ω j )

1/2

φ j,σ (x, t)= φ̃ j,σ (x, t)
(
h̄ω j

)−1/2
= i

1
√

2

[
u jσ (x, t)+ iσ

k j

k j
× u j,σ (x, t)

]
. (79)

This leads to the following form for the photon-field operator

9̂(x, t) =

∑
j,σ

(
h̄ω j

)1/2
φ j,σ (x, t)â j,σ + H.c.

= i
∑
j,σ

(
h̄ω j

2

)1/2 [
u j,σ (x, t)+ iσ

k j

k j
× u j,σ (x, t)

]
â j,σ + H.c.

= i
∑
j,σ

(
h̄ω j

2V

)1/2 [
ek j ,σ + iσ

k j

k j
× ek j ,σ

]
exp

[
i
(
k j · x −ω j t

)]
â j,σ + H.c. (80)

12 Therefore, we conclude the energy eigenstates are proportional to their own dual modes, that is, from (19) they
are eigenfunctions of the integral equationφ̃ j,σ (x, t)= ω j (2π2cσ)−1

∫
φ̃ j,σ (x′, t)

∣∣x − x′
∣∣−2

d3x′. This is actually
the integral representation of the differential eigenvalue equationcσ∇ × φ̃ jσ (x, t)= ω j φ̃ jσ (x′, t). This can be
shown by direct calculation, and also follows from the fact that|x − x′

|
−2 is the Green’s function for the equation

cσ
√

∇2φ̃ jσ (x, t)= ω j φ̃ jσ (x, t) (i.e. for transverse fields
√

∇2 = ∇×).
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Separating the terms in this equation into ‘real’ and ‘imaginary’ parts, as in (68), shows
that in the continuum limit this field operator is equivalent (within a factor 1/

√
ε0) to the

monochromatic-mode expression of Dirac theory for the quantized electromagnetic field in (2)
and (3). The positive-frequency electric and magnetic field operators are then given by

Ê(+)(x, t)= i
∑
j,σ

(
h̄ω j

2ε0V

)1/2

ek j ,σ exp
[
i
(
k j · x −ω j t

)]
â j,σ , (81)

and

B̂(+)(x, t)= i
∑
j,σ

(
h̄ω j

2ε0V

)1/2( k j

ckj
× ek j ,σ

)
exp

[
i
(
k j · x −ω j t

)]
â j,σ . (82)

We have thus shown that both the monochromatic Dirac and the polychromatic T–G QFTs
of electromagnetism can be derived from a photon-energy wave function in much the same
way as one arrives at the QFT for electrons. The photon wave function and its equation of
motion are obtained by finding the first-order wave equation corresponding to the Einstein
energy–momentum–mass relation for a massless, spin-1 particle. We derived the Poincaré-
invariant scalar product for the PWF in coordinate space by requiring a local expression for
the energy expectation value. The scalar product is non-local in the coordinate representation,
but local in the momentum representation. We showed that this scalar product can be used to
better interpret and utilize the T–G wave-packet quantization formalism.

We have found, as have others [8]–[11], [43, 48, 49], that the PWF obeys a first-order
equation of motion that is identical in form to the Maxwell equations (at least in free space).
One should resist, however, interpreting this as evidence that the electric and magnetic fields for
a single photon physically exist. We suggest that the PWF may be taken to be the fundamental
object. In order for a quantity to ‘exist’ in the sense we are using, it should be experimentally
measurable given only one copy of a physical system. A wave function for a single object
represents the quantum state of that object, and is not measurable, even in principle [50, 51].
This contrasts with the case where one has many replicas of the object, allowing quantum-
state tomography to reconstruct the common state [52]–[54]. We suggest that the macroscopic
electric and magnetic fields appear as emergent properties of a collection of many photons,
in spirit similar to the discussion of Merzbacher, who does not invoke PWFs [17]. This is
analogous to the emergence of a macroscopic spin associated with a collection of many atoms,
whose collective state of spin can be determined by weak measurements on the entire ensemble
[55]–[57]. In this sense, we say that the traditional electromagnetic field is described by a mean-
field theory known as Maxwell’s equations.

5. Modes versus states and the wave-function extraction rule

There is a one-to-one relationship between the modes used in QFT and the states used in PWM.
This relationship can be seen most easily in cases that we can restrict the field’s state description
to a fixed subspace of the larger Fock space of photon numbers. To demonstrate this relationship,
we write out the states for a few examples commonly encountered in quantum optics. The
simplest example is that of a single-photon pure state, which in QFT may be denoted by∣∣1φ〉= â†

φ|vac〉, (83)
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whereâ†
φ is the creation operator for a single photon in the spatial-temporal wave-packet mode

φ(x, t), analogous to (10) and (26). In PWM, all information about this state is represented by
the single-photon wave function,

9(1)(x, t)= φ(x, t). (84)

Equation (83) is the state of a field, while (84) is the state of a particle. Both are fully
described by specifying the functionφ(x, t), which plays the role of a mode function in QFT
and a state function in PWM. In either case, the functionφ(x, t) obeys the complex form of the
Maxwell equations (45).

To see the equivalence of the two formalisms more generally, consider a single-photon pure
state in terms of the plane-wave basis, in both QFT and PWM. In QFT, a single-photon state is
given by ∣∣9(1)

〉
=

∑
k,σ

Ck,σ â†
k,σ |vac〉, (85)

where, as before,σ labels the two circular-polarization states associated with a particular wave
vector. The coefficients form one column of a unitary matrix, and so satisfy

∑
k,σ C ∗

k,σCk,σ = 1.

Calculation of the matrix element for the positive-frequency field operator9̂(+)
σ (x, t) between

the vacuum and the single-photon state of the field gives

9(1)(x, t)= 〈vac| 9̂(+)
σ (x, t)

∣∣9(1)
〉
= 〈vac|

(ε0

2

)1/2 (
Ê(+)(x, t)+ iσcB̂(+)(x, t)

) ∣∣9(1)
〉

= 〈vac|
(ε0

2

)1/2
i
∑
k,σ

(
h̄ωk

2ε0V

)1/2(
ek,σ + iσ

ck
ck

× ek,σ

)
exp[i (k · x −ωkt)] âk,σ

∣∣9(1)
〉

= i
∑
k,σ

Ck,σ

(
h̄ωk

4V

)1/2(
ek,σ + iσ

k
k

× ek,σ

)
exp[i (k · x −ωkt)]. (86)

This is of the form of the wave-packet modes in (10), and so equals a PWF.
Equation (86) shows how to extract a PWF from the QFT description of a one-photon state

of the field [19], so we call it the ‘extraction rule.’ In fact, the rule is analogous to that used in
QFT of electrons [34]. To illustrate this, rewrite (86) as

〈vac| 9̂(+)
σ (x, t)

∣∣9(1)
〉
= 〈(σ, x) |9(1) (t)〉, (87)

where we introduce the ‘photon reference states’ by the definition

|(σ, x)〉 = 9̂(−)
σ (x,0) |vac〉 =

(ε0

2

)1/2 (
Ê(−) (x,0)− iσcB̂(−) (x,0)

)
|vac〉

= −i
(ε0

2

)1/2∑
k,λ

(
h̄ωk

2ε0V

)1/2(
e∗

k,λ − iσ
k
k

× e∗

k,λ

)
exp(−i k · x) |1〉k,λ

= −i
(ε0

2

)1/2∑
k,λ

(
h̄ωk

2ε0V

)1/2 (
e∗

k,λ − iσ(iλe∗

k,λ)
)

exp(−i k · x) |1〉k,λ

= −i
∑

k

(
h̄ωk

V

)1/2

e∗

k,σ exp(−i k · x) |1〉k,σ . (88)

Here, we have used the relationship (5), between the wave vectork, and polarization vectorek,σ .
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The states|(σ, x)〉 are not position eigenstates, but they play a role similar to that of such
states for the case of electrons13. Their overlap integral is not a delta function, but is given by〈(

ρ, x′
)∣∣∣(σ, x)〉= h̄cδρσ

π2 |x − x′|
4 . (89)

This can be interpreted as the wave function for the reference state|(σ, x)〉, and is reasonably
localized aboutx′

= x, as we would like to have.

6. Two-photon wave mechanics and multi-photon wave mechanics

In this section, we generalize the PWM formalism to describe two-photon states (treated in [21,
58] and [19, 49]), as well as multiphoton states.

6.1. Two-photon wave mechanics

The PWF concept can be extended to more than one photon. In an earlier paper [21], we
introduced a two-photon wave function (two-PWF) more or less by postulate. In analogy with
the two-electron case, we required that the wave function depend on six space variables and one
time variable, and that it satisfy a wave equation whose time derivative is proportional to the sum
of two Hamiltonian operators of the form (37). Here, we verify that this postulate is supported by
the PWF-extraction rule given in the previous section when generalized by including a product
of two field operators evaluated at distinct points. An arbitrary two-photon state in QFT is given
by the generalization of (85), that is,∣∣9(2)

〉
=

∑
j,σ

∑
m,ρ

C( j,σ ),(m,ρ)b̂
†
j,σ b̂†

m,ρ |vac〉. (90)

The positive-frequency part of the field operator is, from (62),

9̂(+)(x, t)=

∑
j,σ

b̂ j,σ ψ j,σ (x, t). (91)

Then, the PWF-extraction rule for the two-photon state is:

9(2) (x1, x2, t) = 〈vac| 9̂(+) (x1, t) 9̂
(+) (x2, t)

∣∣9(2)
〉

= 〈vac|
∑
r,η

b̂r,ηψr,η (x1, t)
∑
s,µ

b̂s,µψs,µ(x2, t)
∑
j,σ

∑
m,ρ

C( j,σ ),(m,ρ)b̂
†
j,σ b̂†

m,ρ |vac〉

=

∑
r,η

∑
s,µ

(
C(r,η),(s,µ) + C(s,µ),(r,η)

)
ψr,η (x1, t) ψs,µ(x2, t). (92)

We see that the correct bosonic symmetrization automatically emerges in the extracted PWF.
The two-PWF is the energy-density amplitude for localizing the energies of the two photons at
two different spatial pointsx1 andx2 at timet .

To simplify the notation, we will hereafter use the conventionj ≡ ( j, σ ),m ≡ (m, ρ) to
specify particular wave-packet modes or their creation operators. So,C jm meansC( j,σ ),(m,ρ).

13 For electrons, the extraction rule is:〈vac|9̂(+)
σ (x,0)|9(1)(t)〉 = 〈x|9(1)(t)〉 = ψ(x, t). The reference states|x〉

are position eigenstates in the non-relativistic limit.
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We also will incorporate the symmetrization implicitly into the sum, rather than displaying it
explicitly as in (92). Then the two-PWF9(2)(x1, x2, t) is written [19, 21, 58]

9(2) (x1, x2, t)=

∑
j,m

C j mψ
(1)
j (x1, t)⊗ψ (1)

m (x2, t), (93)

where the coefficientsC jm symmetrize the wave function under particle-label exchange, and
⊗ is the tensor product between the photon state spaces. Note that in keeping with standard
QFT notation, the tensor product is suppressed in (92), but is nevertheless implicitly present.
The modulus-squared of the expansion coefficients,|C jm|

2, gives the probabilities of the photons
being in the states labeled byj andm. Each coefficientC jm can be determined by applying (61)
twice to9(2)(x1, x2, t).

The basis states{ψ (1)
m } are solutions of single-photon wave equations, and they include the

spin dependence throughm ≡ (m, ρ).
The vacuum equation of motion for the two-PWF, referred to as the two-photon wave

equation [21, 58], is the sum of the Hamiltonians for the individual photons,

ih̄∂t9
(2)

= h̄cα(2)1 ∇1 ×9(2) + h̄cα(2)2 ∇2 ×9(2), (94)

where the differential operators are understood to act on the appropriate components of the
tensor product, and

α
(2)
1 =63 ⊗ I , α

(2)
2 = I ⊗63, (95)

where

I =

(
1 0
0 1

)
, 63 =

(
1 0
0 −1

)
, 1 =

1 0 0
0 1 0
0 0 1

. (96)

The two-PWF also obeys the zero-divergence condition

∇ j ·9
(2)

= 0, ( j = 1,2), (97)

in which the differential operator acts on the appropriate tensor component. We call (94) the
two-photon wave equation.

Tracing over the tensor product of the Hermitian conjugate of the two-PWF with itself,
and integrating over all space, gives the expectation value of the product of the two photons’
energies ∫ ∫

Tr
[
ψ (2)†ψ (2)

]
d3x1 d3x2 = 〈E1E2〉. (98)

If the state of the two photons is not entangled, this simplifies to〈E1E2〉 = 〈E1〉〈E2〉.
The influence of an inhomogeneous linear refractive index on the propagation of PWFs can

be treated phenomenologically by modifying the wave equation, as described in [10, 21, 58].
We propose that, just as the physical electromagnetic fieldsE andB emerge only in the

limit that many statistically independent photons are present, a physical biphoton field emerges
if many statistically independent photon pairs are present. Such a situation occurs as a result of
parametric down conversion, in which individual blue photons can be spontaneously converted
into pairs of red photons [22].
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6.2. Two-time wave functions

There is an alternative way to define a two-PWF by using two distinct times. This is useful in the
discussions of coherence theory in the following section. Early discussions of two-time wave
functions can be found in [59]–[62]. In (92), instead of assuming a common time in the field
operators, use two distinct times,t1, t2, as is sometimes done in quantum optics [22, 23, 25].
This generates the two-time, two-PWF,

8(2) (x1, t1; x2, t2)=

∑
j,m

C jmψ
(1)
j (x1, t1)⊗ψ (1)

m (x2, t2). (99)

As a consequence of the single-photon, one-time equation of motion (45), this two-time wave
function simultaneously obeys a pair of wave equations

ih̄
∂

∂t j
8(2) (x1, t1; x2, t2)= h̄cα(2)j ∇ j ×8

(2)(x1, t1; x2, t2), ( j = 1,2), (100)

and the zero-divergence conditions

∇ j ·8
(2) (x1, t1; x2, t2)= 0, ( j = 1,2). (101)

The two-time, two-photon formalism may also be arrived at in a manner similar to that for the
one-time formalism through a pair of energy-momentum-mass equations analogous to (27).

Here, we show that these two descriptions ((93) and (99)) of the two-photon state
are equivalent under the standard measurement-collapse hypothesis of quantum mechanics.
Consider a two-photon state described by the one-time wave function in (93). Suppose that
a point-like photo-detector signals a detection event at timeT1 and positionR1. After gaining
this new knowledge, an observer should collapse his or her state description, equation (93), to
the state

9(2) (x1, x2, t)→9(2) (R1, T1; x, t)=

∑
j,m

C jmψ
(1)
j (R1, T1)⊗ψ (1)

m (x, t). (102)

If we interpretT1 as t1 and t as t2, we see that (102) has the same form as (99). Therefore,
they obey the same wave equation (100). We see that the two-time wave equation evolves
not in the ‘absolute wall-clock’ time variablet , but rather in the ‘measurement times’t1, t2.
This illustrates that two-time wave functions can be used for predicting correlations between
measurements at distinct space-time points. It also shows that state collapse is simply one,
non-essential, method for describing these correlations. These conclusions hold for states of
electrons as well as photons.

6.3. Two-photon mixed states

In the case of pure states, the two-PWF contains all obtainable knowledge about the state of
the two-photon system. For the case of non-pure or mixed states, one can construct two-photon
density matrices from two-PWFs as one does in standard quantum mechanics [63]. However,
when one wishes to calculate the reduced density matrix for a system of photons, by tracing out
all information about one photon, confusion may arise when choosing the form of the tracing
operation [19, 64]. As an example, consider a two-photon pure state described by (93). The
density matrix for this state may be written as

ρ(2)
(
x1, x′

1, x2, x′

2, t
)
=9(2) (x1, x2, t)9

(2)
(
x′

1, x
′

2, t
)†
. (103)
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Suppose that we discard all information about the photon labeled by position 2. In standard
quantum mechanics, we would describe the remaining photon state by the reduced density
matrix, formed by settingx′

2 = x2, and integrating overx2. However, we observe that this is
not the proper way to eliminate all information about photon 2 [64], because this uses the
wrong scalar product, and does not eliminate the units of energy related to photon 2. In fact,
such a procedure retains information about photon 2. To extinguish all information regarding
photon 2, one must use the proper scalar product, which for the case of photons, is the non-local
expression in coordinate space (53). Thus the proper reduced density matrix for photon 1 is
given by

ρ(1)
(
x1, x′

1, t
)
=

1

2π2h̄c

∫
d3x2

∫
d3x′

2

9(2) (x1, x2, t)9(2)
(
x′

1, x
′

2, t
)†∣∣x2 − x′

2

∣∣2 . (104)

This density-matrix description and trace operation is readily extended to multiphoton states.

6.4. Multi-photon wave mechanics

The two-PWM developed above can be extended to any number of photons. An-photon pure
state may be characterized by an-photon, one-time wave function given by

9(n) (x1, x2, . . . , xn; t)=

∑
{a}

C{a}

n
⊗
j =1
ψ
(1)
{a} j

(
x j , t

)
, (105)

where the{ψ (1)
l } are a set of single-photon basis states, theC{a} are expansion coefficients that

symmetrize the state with respect to particle-label exchange, the sum is taken over the set of
basis element labels{a} = {a1,a2, . . . ,an}, and{a} j is the jth entry of the basis element label
{a}. The tensor product is taken over then different single-photon states, evaluated at different
space coordinates. The equation of motion for thisn-photon wave function is found by adding
the Hamiltonians associated with the different photon coordinates,

ih̄∂t9
(n) (x1, x2, . . . , xn; t)=

n∑
j =1

h̄cα(n)j ∇ j ×9
(n)(x1, x2, . . . , xn; t), (106)

where theα(n)j are the straightforward generalization of the matrices defined in (95). As in the
two-photon case, there exists a generalizedn-time, n-photon wave function, which is related
to the one-time,n-photon wave function defined above, through the standard measurement-
collapse hypothesis of quantum mechanics as described in section6.2. It is straightforward to
see this relationship, and we will not go through the argument. The reduced density matrices for
subsets of photons are obtained in the same manner as for the two-photon case, with a double,
non-local integration for each photon to be eliminated.

Recall that there is a direct correspondence between the modes of QFT and the states of
single-photon wave mechanics, which we discussed in section5. To extend this to a multi-mode
n-photon pure state, we write the state of the field as∣∣9(n)

〉
=

∑
{b}

C{b}

n
⊗
j =1

∣∣ψ{b} j

〉
. (107)

In the PWM description, the state of the photons is

9(n) (x1, x2, . . . , xn; t)=

∑
{b}

C{b}

n
⊗
j =1
ψ
(1)
{b} j

(
x j , t

)
. (108)
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It is interesting to note that these two equations have the same structure. Indeed this is due
to the fact that they are in effect, equivalent theories. In the Schrödinger picture of quantum
mechanics, the states given by (107) evolve in the same way as does then-photon wave function
in (108). An alternative treatment of many-photon wave mechanics is given in [20].

7. Relation of photon wave mechanics to the Wolf equations of classical coherence
theory

A strong argument in favor of the energy-density wave function form of PWM is that it bears
strong connections to other, well-established theories—both quantum and classical—such as
photo-detection theory, classical and quantum optical coherence theory [22, 43], [65]–[67],
and the biphoton amplitude, which is used in most discussions of spontaneous parametric
down conversion [68]–[71]. In this section, we develop a close connection between two-PWM,
described by the two-PWFs (both one-time and two-time), and second-order optical coherence
theory. We first write the second-order correlation functions and their equations of motion. The
most general second-order coherence description of the electromagnetic field in the context of
semi-classical theory, as defined by Mandel and Wolf, is given by the second-order coherence
matrices (tensors) [22, 72]

E (x1, x2)=
〈
E(−) (x1)⊗ E(+) (x2)

〉
=
[〈

E(−)
r (x1) E(+)

s (x2)
〉]
,

H (x1, x2)=
〈
H(−) (x1)⊗ H(+) (x2)

〉
=
[〈

H (−)
r (x1) H (+)

s (x2)
〉]
,

(109)
M (x1, x2)=

〈
E(−) (x1)⊗ H(+) (x2)

〉
=
[〈

E(−)
r (x1) H (+)

s (x2)
〉]
,

N (x1, x2)=
〈
H(−) (x1)⊗ E(+) (x2)

〉
=
[〈

H (−)
r (x1) E(+)

s (x2)
〉]
,

where E(±),H(±) are the positive- and negative-frequency components of the electric and
magnetic field vectors,x j = (x j , t j ) are space-time coordinates, andr, s ∈ {x, y, z} label the
Cartesian components of the electric- and magnetic-field vectors. The notation[ ] indicates a
3×3 matrix of correlation functions. These four matrices completely describe the correlations
between various components of the electric and magnetic fields at two different space-time
coordinates. In particular, they give a complete description of second-order partial coherence
of an optical field (including spatial, temporal and polarization coherence). The magnetic field
H(±) is used rather than the magnetic inductionB(±) in order to accommodate linear-response
materials into the treatment (although we will not develop that here). See Smith [58] and
Bialynicki-Birula [10].

We find from the Maxwell equations that the evolution of the coherence matrices is
governed by a set of first-order linear differential equations, which we name the ‘first-order-
in-time Wolf equations,’14

∇ j × A +
1

c

∂

∂t j
B = 0, ∇ j · F = 0, ( j = 1,2), (110)

where (A,B) denote the matrix pairs(A,B) ∈ {(E,−N), (M,−H), (N,E), (H,M)}, and the
matrix F is any of the four coherence matrices. Here, the curl and divergence are understood
to act on the appropriate vector in the tensor-product. Equations (110) completely describe the

14 These equations generalize those in [22, 72, 73], which describe a time-stationary field.
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evolution of the second-order coherence of an optical field as it propagates through free space.
Consequences of an inhomogeneous medium can be incorporated without trouble [21, 58].

Using these equations, one can show that each component of the coherence matrices obeys
the Wolf equations [22, 73], a well-known set of second-order-in-time differential equations(

∇
2
j −

1

c2

∂2

∂t2
j

)
Frs (x1, x2)= 0, ( j = 1,2), (111)

where Frs is the r, s component of any of the second-order coherence matrices. The Wolf
equations were recently highlighted for their relation to the two-photon detection amplitude
[74], discussed below. Our treatment in the following generalizes that relation.

We combine the second-order coherence matrices into a single complex matrix, which is
identical in form to the two-PWF,

0(2) (x1, x2)=

(
γ
(2)
+1+1(x1, x2) γ

(2)
+1−1 (x1, x2)

γ
(2)
−1+1 (x1, x2) γ

(2)
−1−1 (x1, x2)

)
, (112)

where the block matrix elementsγ (2)σ 1σ 2
, labeled by the helicity (circular polarization)σ1, σ2 of

the fields at space-time pointsx1 andx2, are given by

γ (2)σ1σ2
(x1, x2)=

ε0

2
{E (x1, x2) +

i

c
[σ1N (x1, x2)+σ2M (x1, x2)] −µ0σ1σ2H (x1, x2)} . (113)

We call this new complex matrix0(2)(x1, x2), thesecond-order RS coherence matrix, since it
can be easily derived from the complex RS vector, equation (68). Each block matrix element
may be written as an expectation value of the tensor product of two different RS vectors

γ (2)σ1σ2
(x1, x2)=

〈
F(−)−σ1

(x1)⊗ F(+)σ2
(x2)

〉
, (114)

where

F(+)σ (x1)=

(ε0

2

)1/2 [
E(+) (x1)+ icσB(+) (x1)

]
. (115)

The negative sign of the helicity,−σ1, on the first RS vector in (114) ensures that the RS
coherence tensor (112) evolves in the same way as does the two-PWF. This relationship between
two-PWM and second-order optical coherence theory shows the equivalence of the evolution of
two-photon states and second-order optical coherence. For a two-photon field, all higher-order
coherence functions equal zero, which emphasizes why the second-order coherence functions
contain all information about the state of the light.

In vacuum, the equations of motion for the second-order RS coherence matrix follow from
the Maxwell equations, and are identical to the evolution equations describing the two-time,
two-PWF, (100) and (101), that is,

ih̄
∂

∂t j
0(2) (x1, x2)= h̄cα(2)j ∇ j ×0

(2) (x1, x2) , ( j = 1,2), (116)

and

∇ j ·0
(2) (x1, x2)= 0, ( j = 1,2). (117)

In a linear medium, these equations are modified in the same way as those for the two-photon
wave function as described in [10, 21, 58]. From this result, we see that the evolution of
two-photon states is identical to that of the second-order optical correlation functions. Thus,
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one can make use of the well-developed theories of second-order optical coherence propagation
to describe the behavior of two-photon states, as done in [21], where decoherence of a pair of
spatially-entangled photons was modeled for propagation through a realistic atmosphere.

The two-time wave-function description has another relationship with classical coherence
theory. Starting from the two-time equations of motion, equation (100), divide by īhc and take
the time derivative of both sides, to give

1

c2

∂2

∂t2
j

8(2) (x1, t1; x2, t2)= −i ∇ j ×

(
1

c

∂

∂t j
8(2) (x1, t1; x2, t2)

)
= −∇ j × ∇ j ×8

(2) (x1, t1; x2, t2)

= ∇
2
j8

(2) (x1, t1; x2, t2) , ( j = 1,2). (118)

We have made use of the vector identity∇ ×∇ × F = −∇
2F +∇(∇ · F) and the fact that the

wave function has zero divergence. Equations (118) are precisely the Wolf equations (111),
which have been previously discussed in relation to two-photon detection amplitudes [74]. Note
that the Wolf equations can be derived from the two-photon wave equations, but the converse is
not true. This is analogous to the relationship between the Dirac equation and the Klein–Gordon
equation for electrons. The two-photon wave equations contain more information about the
evolution of the two-photon field than do the Wolf equations.

8. Relation of photon wave mechanics to two-photon detection amplitudes

The two-photon detection amplitudeA(2)D (x1, x2) of standard quantum optics is proportional
to the joint probability amplitude for detecting one photon in a volume much larger than a
cubic wavelength, centered at the space-time coordinatex1, and the second photon in a volume
centered atx2. Assuming the use of conventional photodetectors, which respond only to the
electric field, the two-photon detection amplitude is given by [22, 25, 43], [65]–[67]

A(2)D (x1, x2)= 〈vac| Ê(+) (x1)⊗ Ê(+) (x2)
∣∣9(2)

〉
. (119)

Here Ê(+)(x j ) is the positive-frequency part of the electric-field operator evaluated at the
space-time coordinatex j of detectorD j ( j = 1,2). This has also been called the biphoton
amplitude in the case of entangled photon pairs created by spontaneous parametric down
conversion [68]–[71].

The two-photon detection amplitude is proportional to the real part of the two-PWF defined
in (99). To see this more explicitly, note that the single-photon wave functions, from which
the two-PWF is constructed, can be linked to the classical Maxwell equations through (65).
There the real part of the single-photon wave function was linked with the electric field and the
imaginary part with the magnetic field. Following this identification in the two-photon case, we
see that the two-PWF may be written as

9(2)
σ1σ2

(x1, x2, t)=
ε0

2

[
E(+)

1 E(+)
2 − σ1σ2c

2B(+)
1 B(+)

2 + ic
(
σ2E

(+)
1 B(+)

2 +σ1B
(+)
1 E(+)

2

)]
. (120)

Here E(+)
j (B(+)

j ) is formally identified with the positive-frequency part of the (non-operator)
electric (magnetic-induction) field, evaluated at the space-time coordinatex j , and a tensor
product is implicit in eachE andB field product. Thus, if our detector is insensitive to magnetic
fields, the real part of the two-PWF is identical in form to the two-photon detection amplitude.
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The same point has been made in [18]. This is not surprising since the PWFs are based upon
energy localization, and it is the energy that activates photon-counting detectors. The energy
from photons is absorbed by such detectors and transformed into a photocurrent of electrons.
It should be clear that the electric-field operators in (119) evolve according to the Maxwell
equations, as do the components of the two-PWF (120). Indeed, one can carry this full circle
and note that one may define a two-photon detection amplitude based on the full electromagnetic
field, which is identical in form to the two-PWF [21]. This idea would prove useful if the
detector absorbs light by exciting a magnetic dipole.

9. Examples and applications

9.1. Example wave-packet modes

In this section, we develop a simple example of the non-monochromatic wave-packet (WP)
modes introduced in sections2 and3 above to describe localized electromagnetic fields and
localized single-photon states. As we pointed out in section5, WP modes for the field are equiva-
lent to states for the photon. In typical laboratory experiments, beam-like radiation is commonly
encountered, that is, light propagating in primarily a single direction, and spatially confined in
the plane transverse (perpendicular) to the propagation direction. In addition, this beam may
consist of a train of pulses moving along the beam axis. The usual treatment of this geometry
makes use of the paraxial and slowly-varying-temporal-envelope approximations [75].

Here, we construct a set of spatial-temporal WPs, which are approximately orthonormal
under the Lorentz invariant scalar product (25) and (59). To do so we choose a form of the
unitary transformation matricesU (σ )

j (k) in (10) to be given by

U (σ )

j (k)= ψ̃l (kx) ψ̃m

(
ky

)
ψ̃n

(
kz − k̄z

)
, (121)

wherej labels the triple indicesl ,m,n, andψ̃m (ki ) is a normalized Hermite-Gaussian function,

ψ̃m (ki )=

(
π1/2wi

2m−1m!

)1/2

Hm (wi ki )exp
(
−w2

i k2
i /2

)
, (i = x, y, z). (122)

Here, 1/wi is the width (or spread) of the WP in momentum space in theith direction. For
beam-like modes traveling in thez-direction, the longitudinal component ofk denoted bȳkz, is
much greater than 1/wx, and 1/wy. The coordinate-space WP modes and their dual modes are
given by the weighted Fourier transforms of the form in (10) and (19)

v j,σ (x, t)= i

(
h̄c

2ε0

)1/2 ∫ d3k

2π3

√
k U(σ )

j (k)ek,σ exp[i(k · x −ωkt)], (123)

and

vD
j,σ (x, t)= i

(
2ε0

h̄c

)1/2 ∫ d3k

(2π)3
1

√
k

U (σ )

j (k)ek,σ exp[i(k · x −ωkt)]. (124)

In the paraxial limit the polarization vectorek,σ does not vary withk, therefore we factor it out
of the integrals. So hereafter we write the mode functions as scalar functions. Similarly, in the
paraxial approximation, the magnitude of the wave vector is dominated by the longitudinal (z)
component, and we can thus approximate the weight function

√
k ≈ |kz|

1/2. With this paraxial
approximation, the transverse integrals factor and lead to the standard Hermite-Gaussian
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Figure 1. Real (top) and imaginary (bottom) parts of them = 2 ‘Hermite-
Gaussian like’ WP mode (left) and its corresponding dual mode (right) plotted as
a funtion of the retarded timetR. In each plot, a central wavelengthλ̄= 2π/k̄z =

810 nm and temporal widthτ = wz/c = 60 fs were used.

transverse spatial modes [76]. The longitudinal WP modes, equivalent to the temporal WPs,
are given by an integral of the form

ψm (tR)= i
∫

dkz

2π
|kz|

1/2 ψ̃m

(
kz − k̄z

)
exp(−ikzctR), (125)

wheretR = t − z/c is the retarded time. The corresponding longitudinal dual modes are given
by a similar integral with

√
k replaced by|kz|

−1/2 (we absorb the constant prefactors(h̄c/2ε0)
1/2

and (2ε0/h̄c)1/2 into the transverse mode functions). In this paraxial approximation, these
integrals can be evaluated analytically in terms of hypergeometric functions. Figure1 illustrates
the real and imaginary parts of the longitudinal mode function and the corresponding dual-
mode function for the mode indexm = 2. Note that the mode functions have characteristic fast
oscillations and a slowly-varying envelope.

Figure2 shows the real and imaginary parts of the product of the complex conjugate of
a dual mode with another WP mode for the same mode index (m = 2) and for different mode
indices (m = 2 and 1). Notice that only the real part of the product of the dual-mode conjugate
and its corresponding mode function gives a positive-definite result. The fact that the imaginary
parts are non-zero indicates that even though these give the proper normalization, there is not a
local photon-number density. The orthonormality of these WP modes and their corresponding
dual modes were checked by numerical integration and do indeed converge correctly. The
‘instantaneous’ overlap is non-zero in either case, but when integrated over all time only the
real part of the overlap between the mode function and its corresponding dual mode gives a
non-zero result.

Note that in this paraxial approximation, there is no coordinate-space relationship between
the dual-mode functions and the mode functions analogous to (22). This can be viewed as a
consequence of the 1D nature of (125). Another result of the lack of a coordinate-space relation
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Figure 2. Real (top) and imaginary (bottom) parts of the product of
the m = 2 dual mode and them = 2 (left), (m = 1) (right), WP mode
ψD

2 (tR)
∗ψ2(tR), (ψD

2 (tR)
∗ψ1(tR)), as a function of retarded timetR. In each plot,

a central wavelength̄λ= 2π/k̄z = 810 nm and temporal widthτ = wz/c = 60 fs
were used.

akin to (22) is that in 1D there is, strictly speaking, no well-defined non-local scalar product in
coordinate space. However, as we have just shown, the dual modes are well defined and their
overlap with the corresponding WP modes leads to a clear description of pulsed light. As pointed
out in section5, these mode functions can be used to expand the electromagnetic field operators
in the QFT description of light or to expand the single-photon wave functions in PWM.

9.2. Conversion between modes and dual modes

As a second example, we consider how to convert physically from the WP-mode basis to the
corresponding dual-mode basis. For this one must have an apparatus that performs the non-local
transformation in (22) or the corresponding transformation in the momentum representation.
For beam-like modes, this amounts to spectral filtering. To determine the momentum-space
transform needed, note that the Fourier amplitudes for the WP and related dual modes are, from
(123) and (124),

ṽ j,σ (k, t)= i

(
h̄ck

2ε0

)1/2

U (σ )

j (k)ek,σ exp(−iωkt), (126)

and

ṽD
j,σ (k, t)= i

(
2ε0

h̄ck

)1/2

U (σ )

j (k)ek,σ exp(−iωkt). (127)

From these relations we see that, in momentum space, a dual mode is simply related to its
corresponding WP mode through multiplication by 2ε0/h̄ck, that is,

ṽD
j,σ (k, t)=

2ε0

h̄c

ṽ j,σ (k, t)
k

. (128)

Note that the influence of the 1/k factor is significant only for ultra-wide-band modes, that is,
ultrashort WPs.
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Figure 3. Dual-mode converter based upon a standard pulse shaper. Conversion
occurs via spectral filtering in a dispersion-free grating-lens set up.

From this expression it is straightforward to implement a dual-mode converter, which
converts WP modes into the corresponding dual modes, with non-unity efficiency. For beam-
like paraxial modes one needs a spectral filter with transmission proportional to 1/ω. For
sub-picosecond pulses this can be implemented by the optical system depicted in figure3. This
system is a specialized version of the standard pulse shaper [75, 77]. It consists of two gratings
(G1 and G2), two lenses (L1 and L2) with focal lengthf, and an amplitude mask (AM). The
input WP modev j,σ (x, t) is Fourier transformed by the grating and lens combination, so that in
the Fourier-transform plane of the lens, the WP mode as a function of transverse position (x), is
proportional to the Fourier transform of the WP mode given byvFT-plane

j,σ (x)∝ ṽ j,σ (ωx/(2πc f )).
Here x is the transverse position, which in the Fourier plane of lens L1 corresponds to the
frequency of the mode, and̃v j,σ is the Fourier transform of the WP mode. If we insert
an amplitude modulator that multiplies by a factor 1/x, we obtain the dual mode at the output,
that is,

vout(x, t)∝ vD
j,σ (x, t). (129)

The transverse positionx is defined to be positive definite, withx = 0 defined as an offset
corresponding to zero frequency (or zero energy for the photon).

One may thus use such a universal mode converter to create a WP dual mode from any
WP mode, without needing to reprogram the shaper. Then one can interfere the dual mode
with its original WP on a standard square-law detector to measure the non-local scalar product.
A precise procedure for such interference detection is balanced-homodyne detection, reviewed
in [53]. The interference term in such an experiment is proportional to the non-standard scalar
product defined in (25).

9.3. Decoherence of spatially-entangled photon pair by atmospheric turbulence

As a third example, we consider the propagation through a turbulent atmosphere of two quasi-
monochromatic photons, initially entangled in their transverse spatial degrees of freedom. In
[21, 58], we assumed the photons are emitted in opposite directions occupying one of two
orbital-angular-momentum (OAM) states, described by the standard, Laguerre-Gauss wave
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functions in the paraxial approximation. We assumed that the photons, labeled A and B, have the
same polarization and radial quantum number, and considered orbital quantum numbers of equal
magnitudes separately. We treated the entangled input state9(2)

= ψA
p, l ⊗ψB

p,−l +ψA
p,−l ⊗ψB

p, l ,
wherel is the OAM quantum number, andp is the radial quantum number.

The photons pass through independent, thin, dielectric, Gaussian phase-randomizing
atmospheres, each modeled by a quadratic-phase structure function, with the same coherence
length. Being interested only in two OAM states for each photon (those with±l , wherel is fixed
at the input), we treated each photon as a qubit, and considered detection of light only in the
same two states that were present at the input. Therefore the measurements do not provide
a complete characterization of the light. We examined the decay of qubit entanglement by
calculating the concurrence using the transmitted density matrix, as a function of the ratio of the
optical beam waist to the characteristic turbulence length scale. We assumed that the atmosphere
is unmonitored, so any independent information about its fluctuations is lost, leading to loss of
entanglement. We found that for a beam waist that is much smaller than the turbulence length,
the qubit entanglement is more robust to the turbulent atmosphere. The results also indicated that
entangled states with larger OAM values experience less disentanglement through a turbulent
atmosphere. The calculation also predicted the sudden disappearance (‘death’) of entanglement,
which was pointed out in the context of two coupled qubits or two atoms in [78, 79].

10. Conclusions and discussion

We have reviewed the T–G polychromatic, WP field quantization approach to electromagnetism.
We showed that the WP modes, which are typically non-orthogonal under the standard scalar
product, can be viewed as being orthonormal by defining a new non-local scalar product. This
non-local scalar product arises naturally in the context of PWM as the Lorentz-invariant scalar
product between single-photon wave functions. In discussing the non-local scalar product, we
used the concept of the dual-mode basis, whose elements are pair-wise orthonormal to the WP
modes under the standard overlap integral.

The theory of PWM, in which a single excitation of the electromagnetic field is treated
as a particle-like entity, has also been reviewed and extended. We have demonstrated how one
can derive the PWF and its equation of motion by paralleling the Dirac treatment of electrons.
Single-photon wave mechanics is shown to be equivalent (in free space) to the standard classical
Maxwell theory of electromagnetism in vacuum. When this theory is generalized to multiphoton
states, the equivalence between classical coherence theory and PWM becomes clear. Thenth
order coherence tensors evolve in the same manner as then-photon wave functions.

In the generaln-photon treatment of PWM, we find that the PWFs are identified with the
spatial-temporal mode functions of the electromagnetic field. Indeed this connection has been
made by others [10, 18, 19, 43, 49]. Yet until now, no one has made the connection with the
non-local scalar product within this context, for example, to calculate reduced density matrix
elements as we showed. The approach used in the standard treatment of quantum optics, in
which the standard scalar product is used, works fine in the quasi-monochromatic limit [4].
However, when broadband photons are involved one must either perform all calculations in the
momentum representation, which is not very useful for localized interactions, or, as done here,
use the non-local scalar product to calculate the overlap between photon states.

We presented an example of beam-like wave-packet states in which one can expand the
PWFs. These paraxial-Hermite-Gauss wave functions are approximately orthogonal under the
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non-local scalar product. To convert between wave-packet modes and their corresponding dual
modes, we introduced the concept of a mode converter, which is based upon spectral filtering in
the paraxial regime. In addition, we discussed the use of PWM to describe the disentanglement
of photons entangled in their OAM degrees of freedom.

One must take care not to attribute or associate the wave function, density matrix, or
state vector in Hilbert space with a quantum object itself, be it a photon, electron, or other
fundamental particle. We note that there are three common interpretations of the photon. One
is the notion of a fundamental particle. Another is that of an excitation of a quantum field.
A third is simply what is registered by a photodetector. In this paper, we do not adhere to any
of these as being more correct, as the mathematics of wave functions has little to say on this
interpretational matter. A common interpretation of the wave function, density matrix, or state
of a quantum object is that it simply gives the maximum available information from which one
can calculate the probabilities of experimental outcomes. Ensembles of experimental outcomes
can be used to determine the quantum state of identically prepared systems, including photons,
as developed in quantum-state tomography [52]–[54], [80].

Open questions remain in PWM. It is not yet clear how to formulate a covariant Lagrangian
for the PWF, although it seems likely that the approach in [36] will prove useful. A Lagrangian
formalism would make it clear how to incorporate interactions of photons with charged particles
at a fundamental level. It is not yet clear what experiments might be done in which the non-
local scalar product would predict results significantly different from those predicted using the
standard overlap integral as an approximate, non-invariant scalar product. It seems likely that an
experiment involving fourth-order interference of independently produced ultrashort photons or
biphotons would provide such an example.
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Appendix A. Dual-mode basis in terms of the wave-packet modes

The dual modesvD
j,σ (x, t), defined in (19) as an integral of the monochromatic plane-

wave momentum-space modesuk,σ (x), can be expressed as a spatial integral of the non-
monochromatic spatial-temporal wave-packet modesv j,σ (x, t) given in (22). To see this, we
take the Fourier transform of the wave packet modes to give the corresponding unitary operators
multiplied by the unit polarization vectorU (σ )

j (k)ek,σ , as in (11). This result, equation (11), is
inserted into the definition of the dual modes, equation (19), to give

vD
j,σ (x, t)= i

(
2ε0

h̄c

)1/2 ∫ d3k

(2π)3
1

√
k

U (σ )

j (k)uk,σ (x)exp(−iωkt)

=
2ε0

h̄c

∫
d3x′ v j,σ (x′, t)

∫
d3k

(2π)3
1

k
exp

[
i k ·

(
x − x′

)]
=

∫
d3x′ v j,σ (x′, t)K (x − x′). (A.1)
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Here, we have used the Fourier transform pair 1/|k| and 1/|x|
2, and introduced the kernel

function

K (x)=
2ε0

h̄c

∫
d3k

(2π)3
1

|k|
exp(i k · x)=

ε0

h̄cπ2

1

|x|
2 . (A.2)

Appendix B. Two possible momentum-space wave function normalizations

In the literature there are two main normalizations used for the momentum-space wave functions
ψ̃σ (p). The most obvious way in which to normalize such wave functions is to unity as we
have done in the main text, equation (40). Here, the wave function has the interpretation of
being theprobability amplitude to find a photon with helicityσ and momentum betweenp
andp + dp [11]. However, there is another common, but non-standard, normalization used in
the literature [8]–[10]. There the authors normalize the momentum-space wave functions to the
average photon energy rather than unity, that is,∑

σ

∫
d3 p

(2π h̄)3
ψ̃BB
σ (p)†ψ̃BB

σ (p)= 〈H〉. (B.1)

Here, 〈H〉 is the expectation value of the single-photon Hamiltonian, and the superscript
BB refers to Bialynicki-Birula, the main proponent of this momentum-space wave function
normalization. We see that the Bialynicki-Birula momentum-space wave functions have the
interpretation of beingenergy amplitudes, instead of probability amplitudes. This implies
that ψ̃BB

σ (p)†ψ̃BB
σ (p)d3 p/(2π h̄)3 is the energy density in momentum space rather than the

probability density. The main reason that we can see for this choice of normalization is that
the coordinate-space wave functions then become direct Fourier transforms of these energy
amplitudes, rather than resorting to a weighted Fourier transform. As pointed out in the text
above, the Bialynicki-Birula momentum-space wave functions and the standard momentum-
space wave functions are simply related in momentum space through multiplication by the
square-root of the monochromatic energy

√
c |p|, that is,

ψ̃BB
σ (p)=

√
c |p| ψ̃σ (p). (B.2)

Appendix C. Lorentz invariance of scalar-product kernel function

The kernel functionG(x − x′) defined in (54) is a special case of the more general two-time
kernel function

J
(
x − x′, t − t ′

)
=

∫
d3k

(2π)3
1

|k|
exp

[
ik ·

(
x − x′

)
− ic |k|

(
t − t ′

)]
. (C.1 )

This kernel can be evaluated in the following way. First write the integral (C.1), in spherical
coordinates

J
(
x − x′, t − t ′

)
=

1

(2π)3

∞∫
0

k2 dk

π∫
0

sin(θ)dθ

2π∫
0

dφ
1

k
exp[ikr cos(θ)− ickτ ] , (C.2 )
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wherer = |x − x′
| andτ = t − t ′. Theφ integral gives a factor of 2π , while theθ integral can

be written as
π∫

0

sin(θ)dθ exp[ikr cos(θ)− ickτ ]

=

1∫
−1

dx exp[ikrx − ickτ ]

=
1

ikr
{exp[ik (r − cτ)] − exp[ik (r + cτ)]}. (C.3 )

The kernel function is thus given by the following integral expression

J
(
x − x′, t − t ′

)
=

1

4π2ir

∞∫
0

dk {exp[ik (r − cτ)] − exp[ik (r + cτ)]}. (C.4 )

This integral can be evaluated using regularization techniques to give

J
(
x − x′, t − t ′

)
=

1

4π2ir

(
i

r − cτ
−

−i

r + cτ

)
=

1

2π2
(
r 2 − c2τ 2

) . (C.5)

This is the generalized kernel function for arbitrary space-time coordinates (x, t) and (x′, t ′).
Notice that it is indeed Lorentz invariant (space-time separations1(x − x′)2 = |x − x′

|
2
−

c2(t − t ′)2, are Lorentz invariant). Also note that the case in whicht = t ′, i.e.τ = 0 is the special
case discussed above (54).

Appendix D. Lorentz transformation properties of momentum-space wave functions

For a normalized, single-PWF, as in (40), we require that the norm be Lorentz invariant.
By assuming that the form of the norm, equation (40), is also Lorentz covariant we can
determine the Lorentz transformation properties of the momentum space wave functions.
Transforming (40) to another inertial frame by a Lorentz transformation3, gives the following
norm for the PWF in the new frame

(ψ‖ψ)=
(
ψ ′

‖ψ ′
)
=

∑
σ

∫
d3 p′

(2π h̄)3
ψ̃ ′

σ (p
′)†ψ̃ ′

σ

(
p′
)
= 1. (D.1)

Here, we use a prime to denote the Lorentz transformed variable. By noting that we may
rewrite the integrand in terms of the Lorentz invariant momentum-space volume element
d3 p′/p′

= d3 p/p, we see that∑
σ

∫
d3 p′

(2π h̄)3 p′
p′ψ̃ ′

σ

(
p′
)†
ψ̃ ′

σ

(
p′
)
=

∑
σ

∫
d3 p

(2π h̄)3 p
p′ψ̃ ′

σ

(
p′
)†
ψ̃ ′

σ

(
p′
)
= 1. (D.2)

For this to be Lorentz invariant the modulus squared of the momentum space wave function
must transform as

ψ̃ ′

σ

(
p′
)†
ψ̃ ′

σ

(
p′
)
=

p

p′
ψ̃σ (p)†ψ̃σ (p). (D.3)
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Thus, we may infer that the photon wave function in momentum space transforms as

ψ̃ ′

σ

(
p′
)
=

√
p

p′
U (3,p, σ ) ψ̃σ (p), (D.4)

whereU is a unitary transformation dependent upon the specific Lorentz transformation3. For
details see [10, 58].
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