

## MECANISMOS DE AMPLIFICACIÓN DE LA RESPUESTA INMUNOLÓGICA

José Angel Cova, MD jacova@ula.ve

### INMUNIDAD INNATA

- \* MECANISMOS DE DEFENSA ACTIVOS PREVIO AL ENCUENTRO CON EL ANTÍGENO
- SON MECANISMOS NO MODIFICADOS POR ENCUENTROS SUBSIGUIENTES CON EL ANTÍGENO
- ES LA RESPUESTA INICIAL A LAS INFECCIONES
- \* SUS MECANISMOS EFECTORES SON, A MENUDO, USADOS POR LA INMUNIDAD ESPECÍFICA
- \* INFLUYE EN LA NATURALEZA Y EFECTIVIDAD DE LA INMUNIDAD ESPECÍFICA

### INMUNIDAD INNATA

#### **BARRERAS:**

Epitelio Defensinas

Linfocitos Intraepiteliales

CÉLULAS EFECTORAS CIRCULANTES:

Neutrófilos Neutrófilos

Macrófagos

Células NK

PROTEÍNAS EFECTORAS CIRCULANTES:

\* Complemento

Lectina de Unión a Manosa

Proteína C Reactiva

Factores de Coagulación

\* CITOKINAS:

\* TNF, IL-1, Quimiocinas

FN-α, β

· IFN-γ

L-12

CD4/th1

· IL-15

\* IL-10, TGF-β

Previene la entrada microbiana

Destrucción microbiana Destrucción microbiana

Destrucción microbiana

Fagocitosis

Fagocitosis e Inflamación

Lisis de células infectadas, Activ. de M∅

Microbicida, Opsonización.

Opsonización, Microbicida

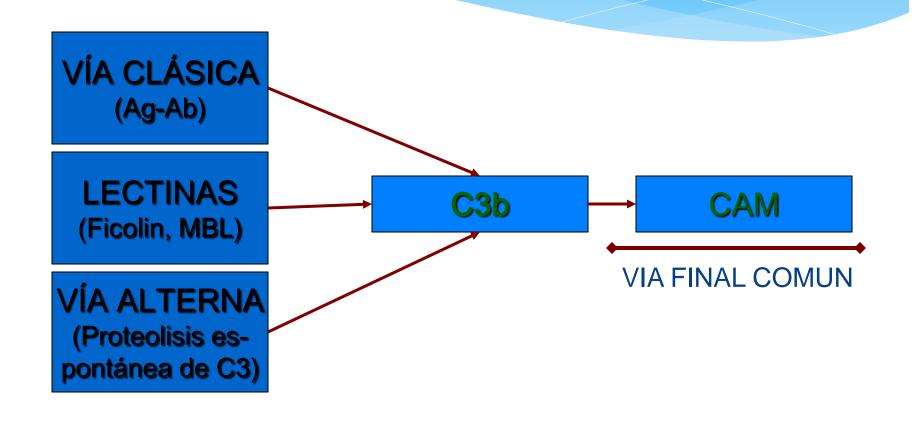
Opsonización

Limita los tejidos infectados

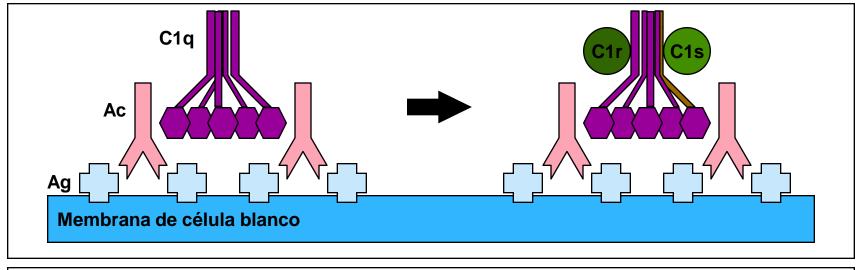
Inflamación

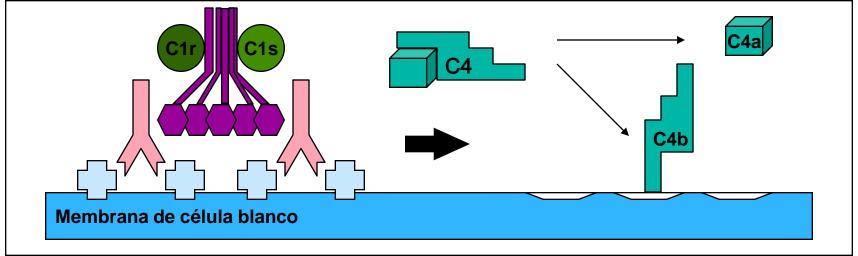
Resistencia viral Activación de M∅

Producción de IFN por NK y T,

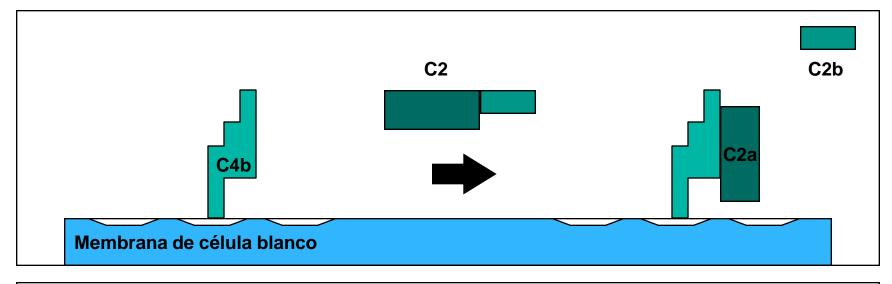

Proliferación de Células NK

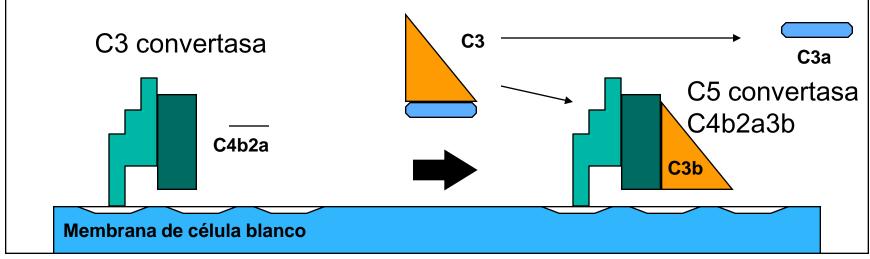
Control de la Inflamación


### SISTEMA DE COMPLEMENTO.

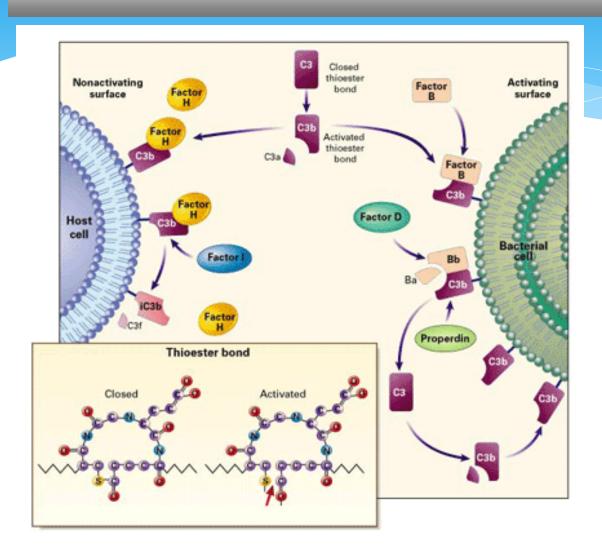

- Sistema compuesto de > 30 proteínas y glicoproteínas presentes en el plasma o unidos a superficies celulares.
- Paritcipan en fenómenos biológicos que incluyen defensa contra bacterias, virus y otras particulas extrañas; por medio de mecanismos como la lisis, fagocitosis, inflamación e inmunoregulación.

# SISTEMA DE COMPLEMENTO: Fases de la activación



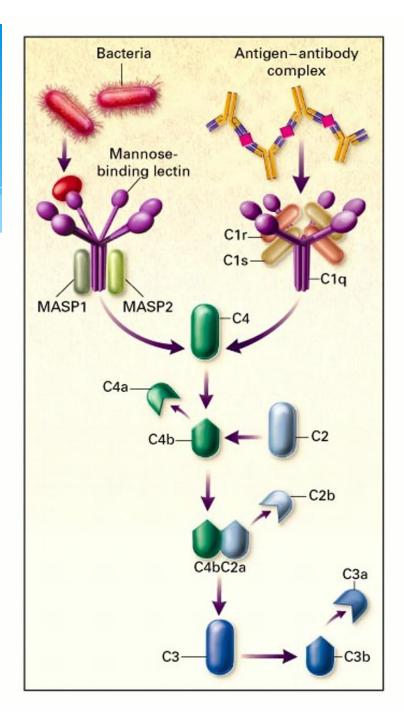


### COMPLEMENTO VÍA CLÁSICA



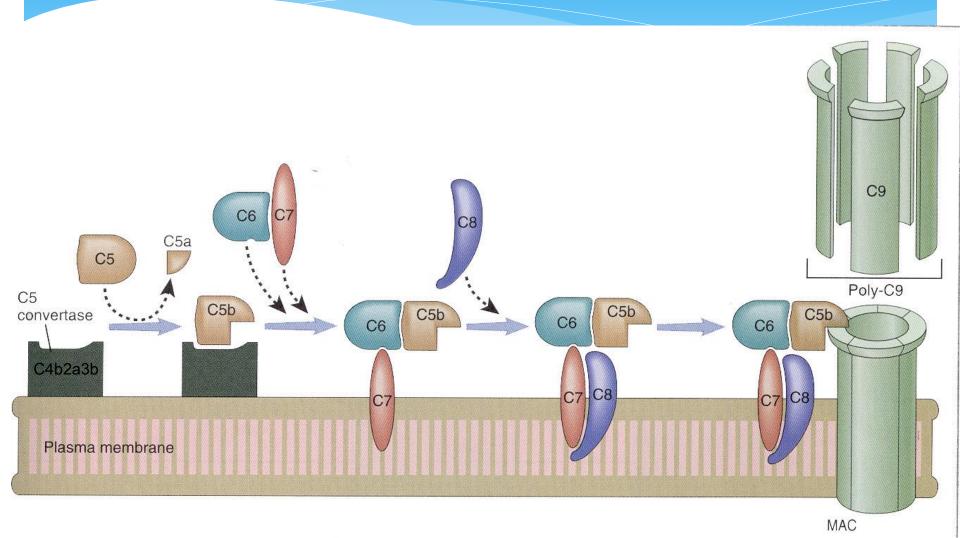



### COMPLEMENTO VÍA CLÁSICA





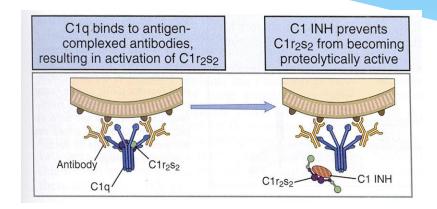

### COMPLEMENTO VÍA ALTERNA

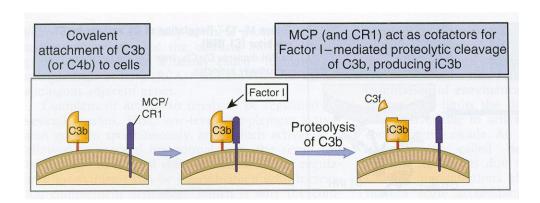


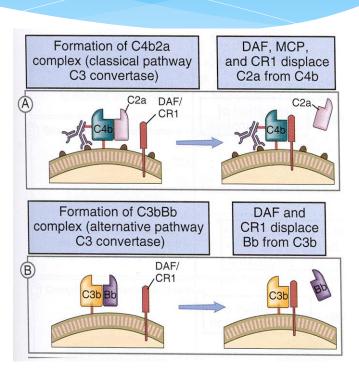

(C3b)2Bb ó (C3b)nBb C5 convertasa

### VÍA DE LA LECTINA DE UNIÓN A MANOSA

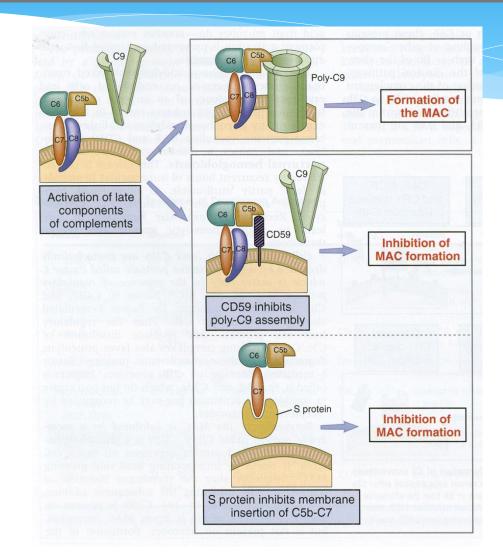



### COMPLEMENTO VÍA FINAL COMÚN





### COMPLEMENTO REGULACIÓN

| <u>PROTEÍNA</u> | ESTRUCTURA                                     | DISTRIBUCIÓN                                     | ACTÚA SOBRE  | <u>FUNCIÓN</u>                                                             |
|-----------------|------------------------------------------------|--------------------------------------------------|--------------|----------------------------------------------------------------------------|
| C1 Inhibidor    | 104 kD                                         | Plasma                                           | C1r, C1s     | Inhibidor de proteasa de serina;<br>disocia a C1r y C1s de C1q             |
| Factor I        | 88 kD; dímero<br>de sub-unid. de<br>38 y 50 kD | Plasma                                           | C4b, C3b     | Proteasa de serina; corta C3b y<br>C4b usando Factor H, MCP,<br>C4BP o CR1 |
| Factor H        | 150 kD; CCPRs<br>múltiple                      | Plasma                                           | C3b          | Une a C3b y desplaza a Bb<br>Cofactor para Factor I                        |
| C4BP            | 570 kD; CCPRs<br>múltiple                      | Plasma                                           | C4b          | Une a C4b y desplaza a C2<br>Cofactor para Factor I                        |
| MCP ( CD46)     | 45-70 kD;<br>4 CCPRs                           | Leucocitos, Cél<br>epiteliales y<br>endoteliales | C3b, C4b     | Cofactor para la degradación de<br>C3b y C4b mediada por Factor I          |
| DAF             | 70 kD; Ligado a<br>GPI, 4 CCPRs                | Células sang.,<br>epiteliales y<br>endoteliales  | C4b2b, C3bBb | Disocia las convertasas de C3                                              |
| CD59            | 18 kD, ligado a<br>GPI                         | Células sang.,<br>epiteliales y<br>endoteliales  | C7, C8       | Bloquea la unión de C9 y<br>previene la formación del CAM                  |


## COMPLEMENTO REGULACIÓN







### COMPLEMENTO REGULACIÓN




## COMPLEMENTO RECEPTORES

| RECEPTOR                     | ESTRUCTURA                                           | LIGANDO                               | DISTRIBUCIÓN                                                                | <u>FUNCIÓN</u>                                                                |
|------------------------------|------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| CR1 (CD35)                   | CCPRs múltiple;<br>160-250 kD                        | C3b>C4b>iC3b                          | Macrófagos,<br>Neutrófilos, Cél T<br>y B, Eritrocitos,<br>Eosinófilos, FDCs | Fagocitosis Aclaramiento de Comp Inm Promueve disociación de Convertasa de C3 |
| CR2 (CD21)                   | CCPRs múltiple;<br>145 kD                            | C3d/C3dg>iC3b                         | Linf B, FDCs,<br>Epitelio<br>nasofaringeo                                   | Coreceptor para<br>activ de linf B<br>Atrapamiento del<br>Ag en CG            |
| CR3 (Mac-1,<br>CD11b/CD18)   | Integrina ( $\alpha$ de 165 kD y $\beta_2$ de 95 kD) | iC3b, ICAM-1,<br>También<br>microbios | Macrófagos,<br>Neutrófilos, Cel<br>NK                                       | Fagocitosis<br>Adhesión<br>vascular                                           |
| CR4 (p150/95,<br>CD11c/CD18) | Integrina ( $\alpha$ de 150 kD y $\beta_2$ de 95 kD) | iC3b                                  | Macrófagos,<br>Neutrófilos, Cél<br>NK                                       | Fagocitosis<br>Adhesión<br>vascular                                           |

## COMPLEMENTO FUNCIONES

- Defensa contra agentes infecciosos:
   Opsonización, Quimiotaxis y Activación de leucocitos, Lisis de bacterias y células.
- \* Conexión entre la Inmunidad Innata y Adaptativa: Aumento de la respuesta por Abs, Incremento de la Memoria Inmunológica.
- \* Eliminación de Complejos Inmunológicos de los tejidos y de células apoptoticas.



SI UN TITULO SERICO DE 0 ES HALLADO ESTE DEBE REPETIRSE

# COMPLEMENTO DEFICIENCIAS HEREDITARIAS

TABLE 3. CLINICAL EFFECTS OF HEREDITARY COMPLEMENT DEFICIENCIES.\*

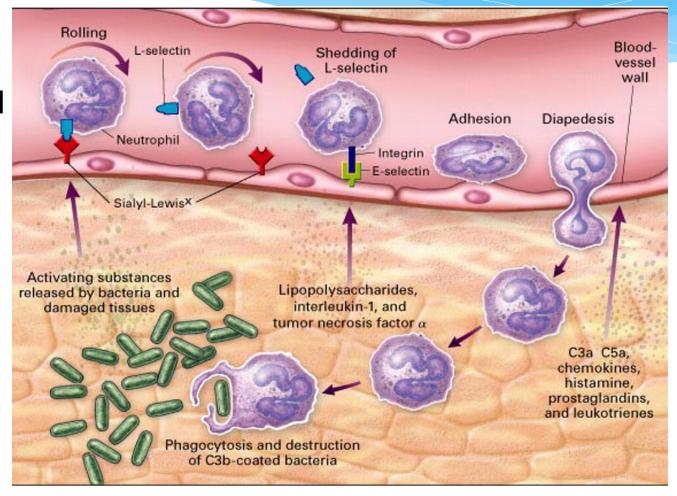
| COMPLEMENTARY DEFICIENCY                            | CONSEQUENCE OF COMPLEMENT ACTIVATION                                                             | CLINICAL ASSOCIATION                                                                                                   |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| C3                                                  | Loss of major complement opsonin and<br>failure to activate membrane-attack-com-<br>plex pathway | Pyogenic bacterial infections, may be accom-<br>panied by distinctive rash<br>Membranoproliferative glomerulonephritis |
| C3, properdin, membrane-<br>attack-complex proteins | Failure to form membrane-attack complex                                                          | Neisserial infection                                                                                                   |
| C1 inhibitor                                        | Loss of regulation of C1 and failure to<br>activate kallikrein                                   | Angioedema                                                                                                             |
| CD59                                                | Failure to prevent the formation of mem-<br>brane-attack complex on autologous cells             | Hemolysis, thrombosis                                                                                                  |
| Clq, Clr and Cls, C4, C2                            | Failure to activate the classical pathway                                                        | Systemic lupus erythematosus                                                                                           |
| Factor H and factor I                               | Failure to regulate the activation of C3;<br>severe secondary C3 deficiency                      | Hemolytic-uremic syndrome<br>Membran oproliferative glomerulonephritis                                                 |

<sup>\*</sup>C1 inhibitor, CD59, factor H, and factor I are regulatory proteins of the complement system. The other proteins are members of the activation pathways of complement (as shown in Fig. 1). C3 deficiency is associated with both infectious and inflammatory diseases.

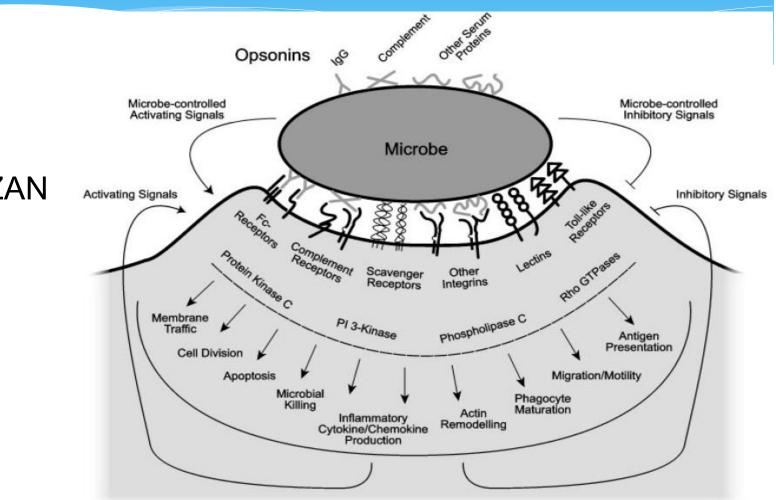
### **FAGOCITOSIS**

"Definición"

Es el proceso por el cual células **especializadas buscan**, localizan, identifican e introducen a su citoplasma partículas, gérmenes o células extrañas para destruirlos y extraer de ellos los antígenos que se deben **presentar** a los linfocitos.


Clasificación de los fagocitos:
Profesionales
No Profesionales

### FAGOCITOSIS GENERALIDADES


- \* Forma de internalización celular para la captura de partículas grandes (>0,5  $\mu$  de espesor) por un mecanismo dependiente de actina.
- \* Interviene en:
  - Captura y degradación de agentes infecciosos y células seniles
  - \* Interviene en el desarrollo y remodelamiento de tejidos
  - \* Participa en la respuesta inmune específica y en la inflamación

### FAGOCITOSIS MIGRACIÓN AL FOCO INFLAMATORIO

#### **BUSCAN**



### **FAGOCITOSIS**



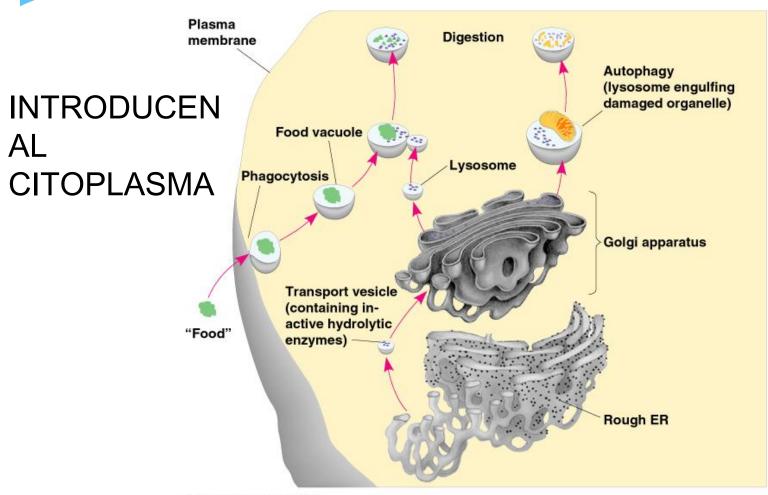

**LOCALIZAN** 

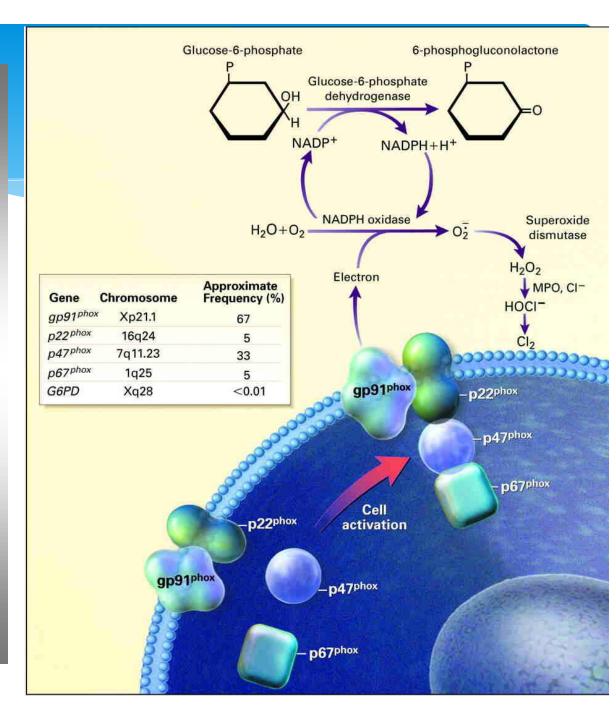
TABLE 1 Phagocytic receptors for microbes

| Receptors that participate in phagocytosis of microbes                                                                                | Ligands IDENTIFICAN                                                                               | References           |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|
| Fc-Receptors:                                                                                                                         |                                                                                                   |                      |
| FcγRI (CD64)                                                                                                                          | IgG-, CRP-, SAP-opsonized particles                                                               | (20-23)              |
| FcγRII* (CD32)                                                                                                                        | IgG-, CRP-, SAP-opsonized particles                                                               | (20-23)              |
| FcγRIII (CD16)                                                                                                                        | IgG-, CRP-, SAP-opsonized particles                                                               | (20-23)              |
| FcεRI                                                                                                                                 | IgE-opsonized particles                                                                           | (24)                 |
| FceRII (CD23)                                                                                                                         | IgE-opsonized particles                                                                           | (25)                 |
| FcαRI (CD89)                                                                                                                          | IgA-opsonized particles                                                                           | (26)                 |
| Complement receptors:<br>CR1 (CD35)<br>CR3 ( $\alpha_M\beta_2$ , CD11b/CD18, Mac1)<br>CR4 ( $\alpha_X\beta_2$ , CD11c/CD18, gp150/95) | MBL-, C1q-, C4b-, C3b-opsonized particles<br>iC3b-opsonized particles<br>iC3b-opsonized particles | (27)<br>(28)<br>(29) |
| Various integrins:<br>$\alpha_5\beta_1$ (CD49e/CD29)<br>$\alpha_4\beta_1$ (CD49d/CD29)<br>$\alpha_{\nu}\beta_3$ (CD51/CD61)           | Fibronectin/Vitronectin-opsonized particles                                                       | (30)                 |
| Scavenger receptors:                                                                                                                  |                                                                                                   |                      |
| SRA                                                                                                                                   | Bacteria, LPS, Lipoteichoic Acid                                                                  | (31)                 |
| MARCO                                                                                                                                 | Bacteria                                                                                          | (32)                 |
| Mannose receptor (CD206)                                                                                                              | Mannan                                                                                            | (33)                 |
| Dectin-1                                                                                                                              | β1,3-glucan                                                                                       | (34)                 |
| CD14                                                                                                                                  | LPS, peptidoglycan,                                                                               | (35, 36)             |
| C1qR(P)                                                                                                                               | C1q, MBL, SPA                                                                                     | (37)                 |

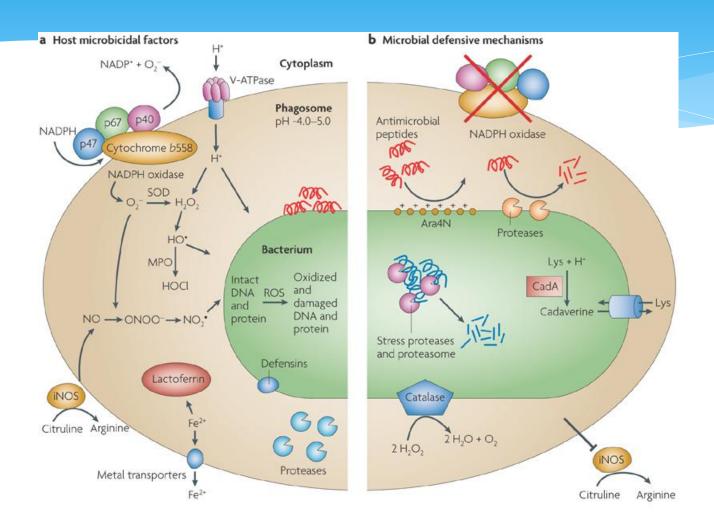
<sup>\*</sup>In humans, FcγRIIA is an activating phagocytic receptor, and FcγRIIB is an inhibitory receptor. Mice express only FcγRIIB. CRP, C-reactive protein; SAP, Serum amyloid P.

### FAGOCITOSIS FORMACION DEL FAGOSOMA




## ETAPAS DE LA FAGOCITOSIS MADURACIÓN DEL FAGOSOMA

- \* Es el proceso que cumple el fagosoma traficando por los microtúbulos, a través de la fusión y fisión con endosomas y finalmente con lisosomas hasta formar el fagolisosoma.
- \* La tasa de ésta varía según la naturaleza de la interacción entre la superficie de la partícula y la membrana fagosomal.
- \* La transferencia del contenido entre lisosomas y el fagosoma se cree realizado por puentes acuosos estrechos que solo permiten un intercambio limitado.
- \* Aún el fagolisosoma continúa fusionandose con otros lisosomas.


## ETAPAS DE LA FAGOCITOSIS DIGESTIÓN

|                     | Gránulos Azurófílicos | Gránulos Específicos          | Gránulos de Gelatinasa |
|---------------------|-----------------------|-------------------------------|------------------------|
| Proteínas solubles: |                       |                               |                        |
| Microbicidas        | Mieloperoxidasa       | Lisozyma                      |                        |
|                     | Lisozyma              |                               |                        |
|                     | Defensinas            |                               |                        |
| Otras enzimas       | Hidrolasas ácidas     | Colagenasa                    | Gelatinasa             |
|                     | Elastasa              | Gelatinasa                    |                        |
|                     | Catepsina G           |                               |                        |
|                     | Proteinasa 3          |                               |                        |
|                     | Azurocidina           |                               |                        |
| Otras proteínas     |                       | Lactoferrina                  |                        |
|                     |                       | $\beta_2$ -microglobulina     |                        |
|                     |                       | Prot. Unión a B <sub>12</sub> |                        |
| Prot. de membrana:  |                       |                               |                        |
| Receptores para     |                       | Complemento (CR3)             | Complemento (CR1)      |
|                     |                       | Quemokinas                    | IgG (FcγRIII)          |
|                     |                       | N-formil-péptidos             |                        |
|                     |                       | Laminina                      |                        |
|                     |                       | Vitronectina                  |                        |
| Otras proteínas     | CD63                  | Mac-1 (CD11b/CD18)            | Mac-1 (CD11b/CD18)     |

### Formación de ROI



### FAGOCITOSIS: Digestión



### PRODUCCION DE ROS

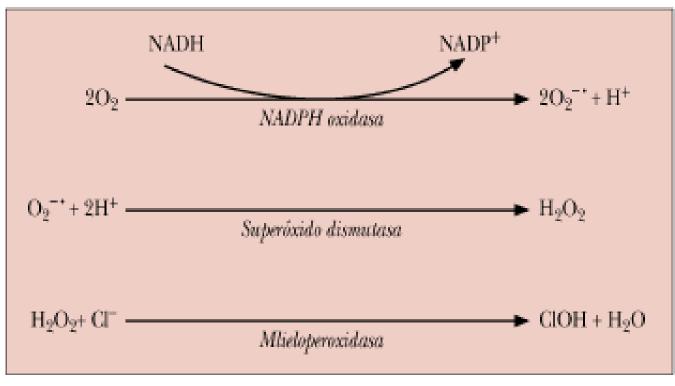
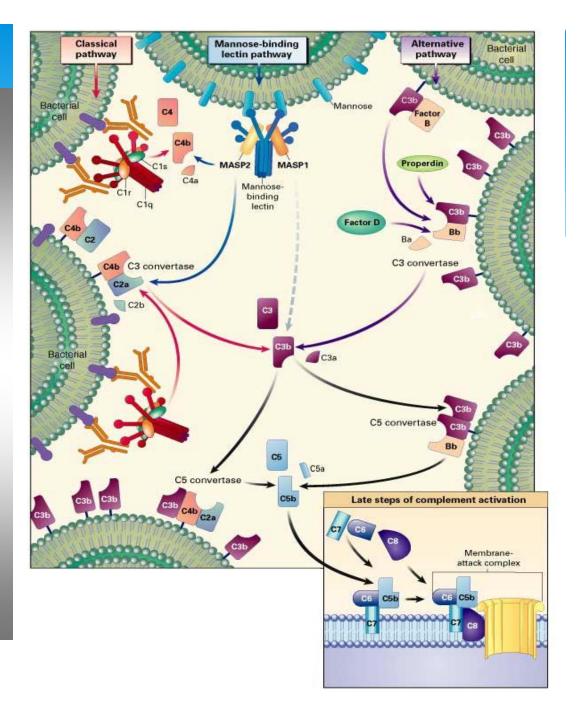




FIGURA 54.2. Producción de hipoclorito durante la fagocitosis

## FAGOCITOSIS PRODUCCIÓN DE MEDIADORES INFLAMATORIOS

- Conlleva a la respuesta inmune específica
- Mediadores producidos por macrófagos:
  - \* Interferones  $(\alpha, \beta)$
  - Factores Estimulantes de Colonia (GM, M, G, otros)
  - \* Interleucinas (1, 6, 8, 10, 12)
  - \* Quimiocinas
  - \* TNF-α
  - \* Factor de Crecimiento derivado de Plaquetas
  - \* PAF
  - \* TGF-β
  - Derivados del AA

RESUMEN:
VIAS DE
ACTIVACIÓN DEL
COMPLEMENTO



### FAGOCITOSIS RESUMEN

