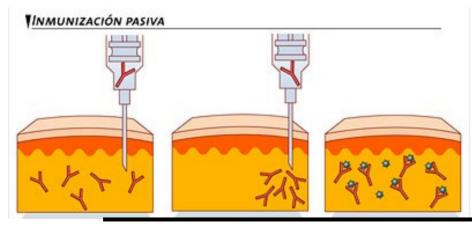


INMUNIZACIONES

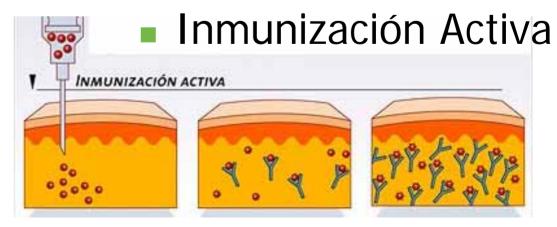
Dra Morella Bouchard

IDIC-ULA

Edward Jenner — vacunación con virus de la viruela en 1796


OBJETIVO DE LA INMUNIZACIÓN

- En un individuo es la prevención de la enfermedad
- En una población es la erradicación de la enfermedad


TIPOS DE INMUNIZACIÓN

Inmunización Pasiva

- Proporciona protección transitoria
- No activa el Sistema Inmunológico
- No genera memoria

 Proporciona inmunidad protectora y memoria inmunológica

INMUNIDAD ACTIVA O PASIVA

Inmunidad

Pasiva

Acs maternos naturales

Inmunoglobulinas

Antitoxina

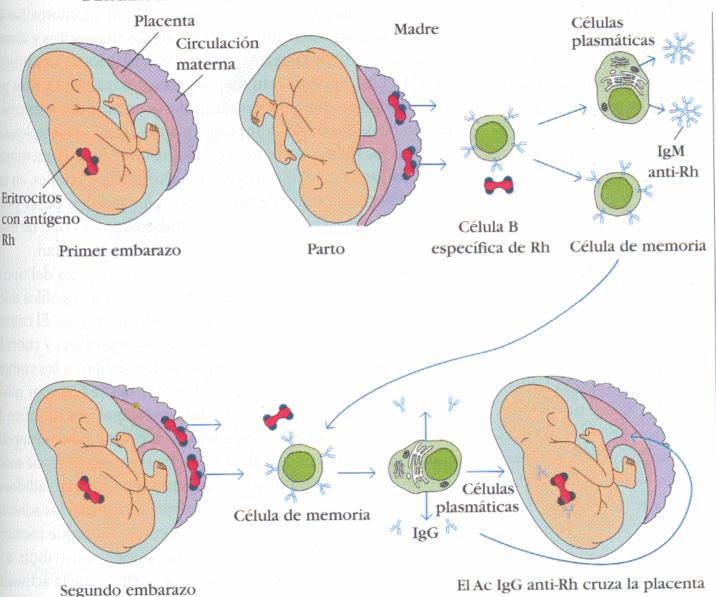
Ac monoclonal humanizado

InmunidadActiva

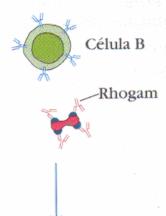
Infección Natural

Vacunas

Toxoide


- Deficiencia en la síntesis de anticuerpos por defectos en las células B congénitos o adquiridos
- Exposición a una enfermedad que puede complicarse (ej: individuo con leucemia expuesto a varicela o sarampión)
- Presencia de una enfermedad donde el anticuerpo puede mejorar o ayudar a suprimir los efectos de la toxina (ej: tétano, difteria, botulismo)

AGENTES UTILIZADOS EN LA INMUNIZACIÓN PASIVA


Enfermedad	<u>Agente</u>
Botulismo	Antitoxina equina
Difteria	Antitoxina diftérica equina
Eritroblastosis fetal	Inmunoglobulina Rho (D)
Hepatitis A y B	Gammaglobulina Humana
Hipogammaglobulinemia	Gammaglobulina Humana
Mordedura de serpiente	Antiveneno equino
Picadura de araña viuda negra	Antiveneno de viuda negra equino
Rabia	Gammaglobulina Humana Antirrábica
Sarampión	Gammaglobulina Humana
Tétano	Inmunoglobulina antitetánica

DESARROLLO DE ERITROBLASTOSIS FETAL (SIN RHOGAM)

y ataca los eritrocitos fetales, lo que produce eritroblastosis fetal PREVENCIÓN (CON RHOGAM)

Madre (tratada con Rhogam)

Previene la activación de las células B y la formación de células de memoria

Inmunización Pasiva con Ig Rho

AGENTES UTILIZADOS EN LA INMUNIZACIÓN PASIVA

Enfermedad	<u>Agente</u>
Botulismo	Antitoxina equina
Difteria	Antitoxina diftérica equina
Eritroblastosis fetal	Inmunoglobulina Rho (D)
Hepatitis A y B	Gammaglobulina Humana
Hipogammaglobulinemia	Gammaglobulina Humana
Mordedura de serpiente	Antiveneno equino
Picadura de araña viuda negra	Antiveneno de viuda negra equino
Rabia	Gammaglobulina Humana Antirrábica
Sarampión	Gammaglobulina Humana
Tétano	Inmunoglobulina antitetánica

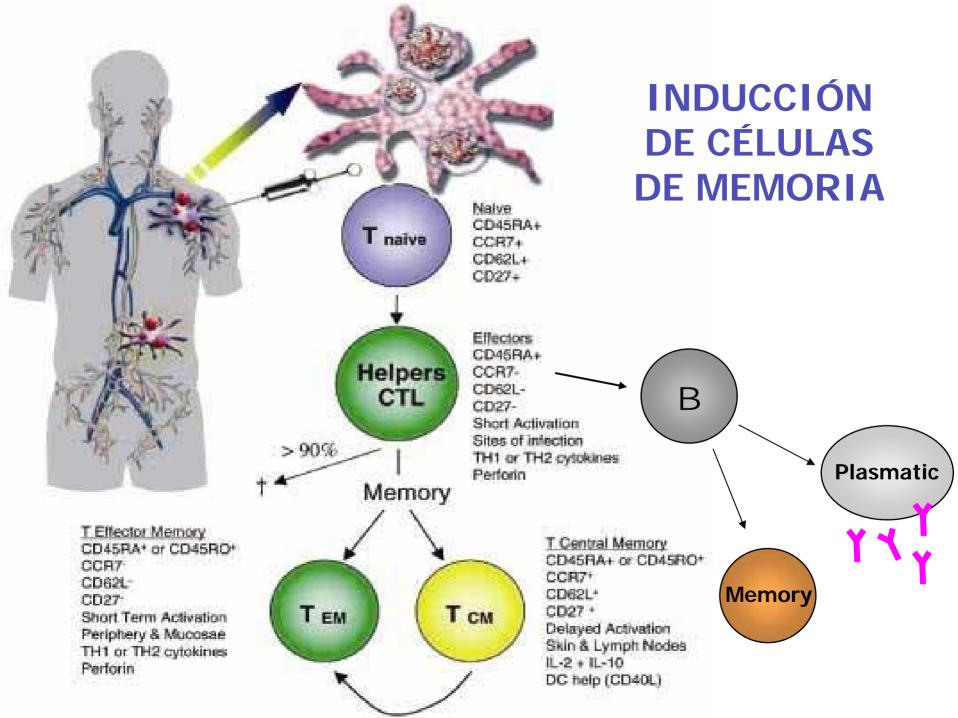
Reacciones anafilácticas
 Ig E específica contra el anticuerpo pasivo

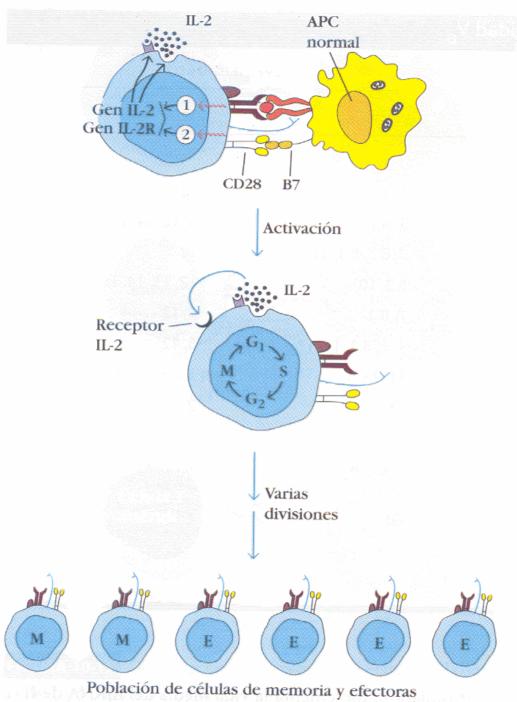
Enfermedad del suero
 IgG y/o IgM específica contra el anticuerpo extraño, forma complejos inmunes que activan complemento y se depositan en los tejidos

INMUNIZACIÓN ACTIVA

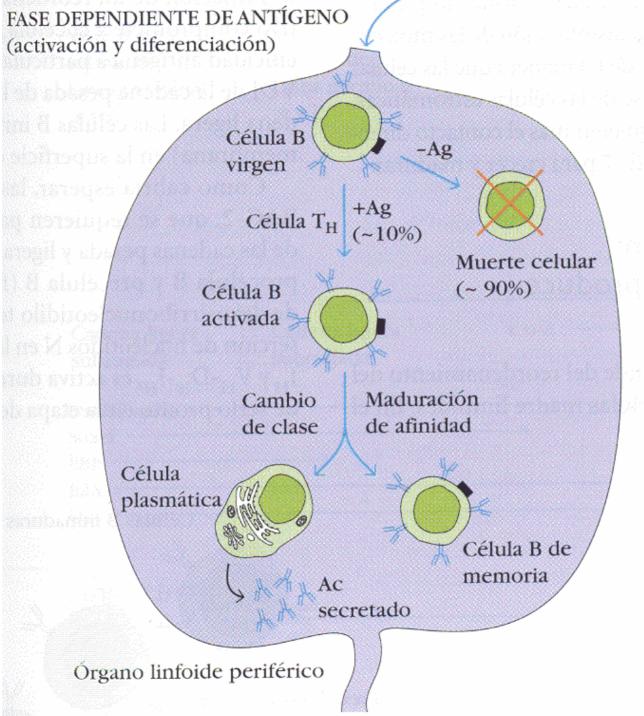
VACUNAS

CARACTERÍSTICAS DE UNA VACUNA EFECTIVA


- Segura
- Proporcionar Protección
- Inducir memoria inmunológica a largo plazo
- Inducir Ac neutralizantes
- Inducir células T protectoras
- Consideraciones prácticas

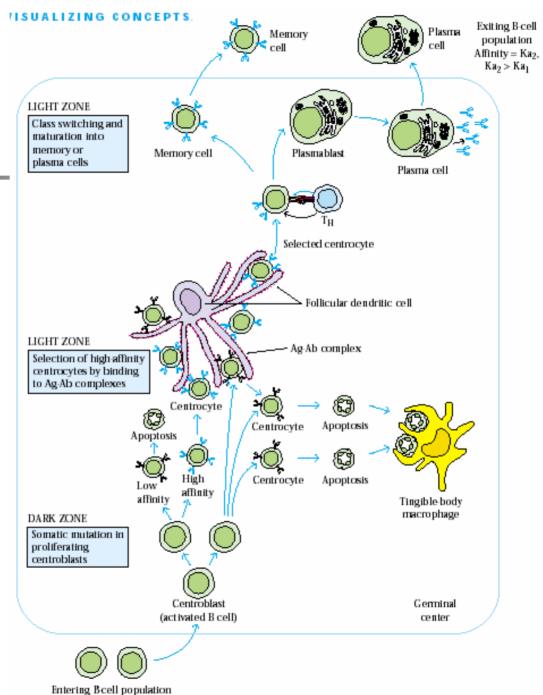

Bajo costo por dosis

Estabilidad biológica

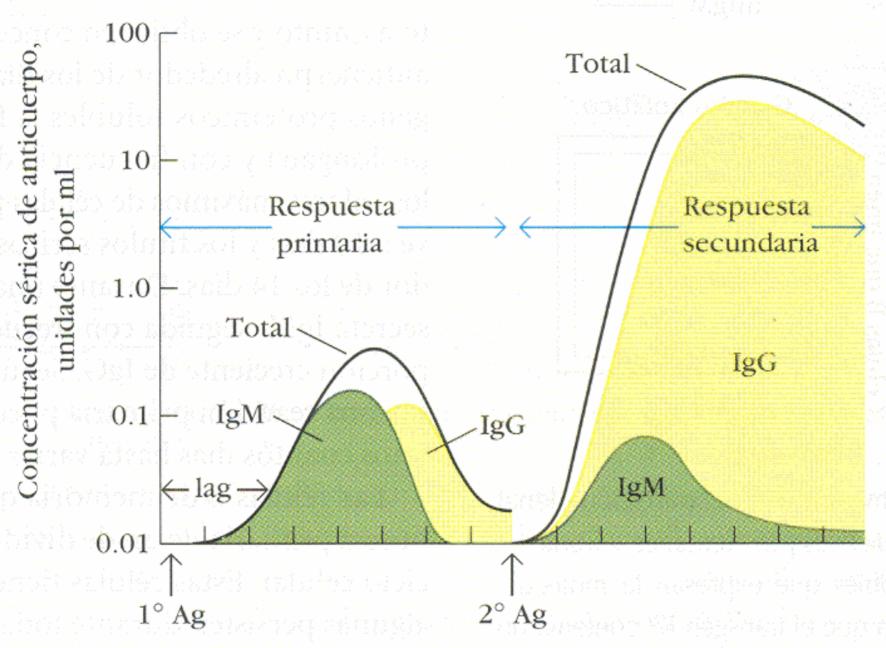

Fácil administración

Pocos efectos secundarios

CÉLULAS T DE MEMORIA



CÉLULAS B DE MEMORIA



CÉLULAS B DE

MEMORIA
Papel de las
Células
Dendríticas
Foliculares

Affinity = Ka₁

Tiempo después de la inmunización

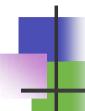
FACTORES EN LA INMUNIZACIÓN

- Tipo de antígeno
- Vía
- Tiempo
- Adyuvantes

TIPOS DE VACUNAS

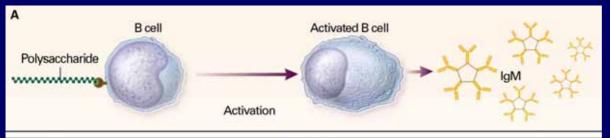
THE SEL MISSING			
Enfermedad o Patógeno	Tipo de Vacuna	Enfermedad o Patógeno	Tipo de Vacuna
Organis	mos Enteros	Macromolé	culas Purificadas
Bacterias		Toxoides	
Anthrax	Inactivado	Difteria	Exotoxina inactivada
Cólera	Inactivado	Tétano	Exotoxina inactivada
Pertussis	Inactivado		
Tuberculosis	Vivo atenuado BCG	Polisaçárido	
Tifoidea	Vivo atenuado	capsular	
Virus		Haemophilus influenzae	Polisacárido+
Fiebre Amarilla	Vivo atenuado	tipo b	proteína acarreadora
Hepatitis A	Inactivado	Neisseria	Polisacárido
Influenza	Inactivado	meningitidis	
Sarampión	Vivo atenuado	Streptococcus	23 polisacáridos capsulares distintos
Parotiditis	Vivo atenuado	pneumoniae	capsulares distintos
Polio (Sabin)	Vivo atenuado	Antígono do	
Polio (Salk)	Inactivado	Antígeno de Superficie	
Rabia	Inactivado	Hepatitis B	Antígeno de
Rotavirus	Vivo atenuado	Tropatitio B	superficie recombinante (HbsAg)
Rubeola	Vivo atenuado		recombinante
Varicela	Vivo atenuado		(Musay)

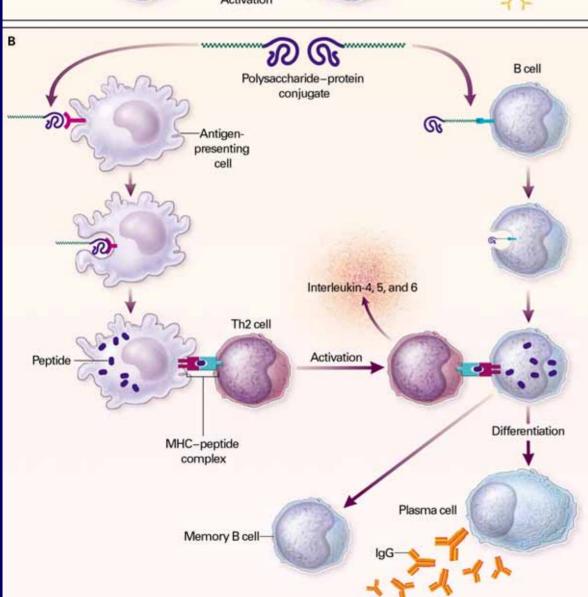
Comparación entre Vacuna atenuada (vivo) e inactivada (muertos)


Características	Vacuna Atenuada	Vacuna Inactivada
Producción	Selección de organismos avirulentos por cultivo bajo condiciones adversas o crecimiento en huésped no natural	Patógenos virulentos inactivados por químicos o irradiación con rayos X
Requerimiento de refuerzo	Generalmente una dosis	Requiere múltiples dosis
Estabilidad relativa	Menos estable	Más estable (ventajoso donde la refrigeración es limitada)
Tipo de inmunidad inducida	Inmunidad humoral y mediada por células	Principalmente inmunidad humoral
Tendencia a la reversión	Puede revertir a la forma virulenta	No puede revertir a la forma virulenta

TIPOS DE VACUNAS

THE SEL MISSING				
Enfermedad o Patógeno	Tipo de Vacuna	Enfermedad o Patógeno	Tipo de Vacuna	
Organis	mos Enteros	Macromolé	Macromoléculas Purificadas	
Bacterias		Toxoides		
Anthrax	Inactivado	Difteria	Exotoxina inactivada	
Cólera	Inactivado	Tétano	Exotoxina inactivada	
Pertussis	Inactivado			
Tuberculosis	Vivo atenuado BCG	Polisaçárido		
Tifoidea	Vivo atenuado	capsular		
Virus		Haemophilus influenzae	Polisacárido+	
Fiebre Amarilla	Vivo atenuado	tipo b	proteína acarreadora	
Hepatitis A	Inactivado	Neisseria	Dolloggárido	
Influenza	Inactivado	meningitidis	Polisacárido	
Sarampión	Vivo atenuado	Streptocoçcus	23 polisacáridos capsulares distintos	
Parotiditis	Vivo atenuado	pne'umoniae	capsulares distintos	
Polio (Sabin)	Vivo atenuado	A - 15		
Polio (Salk)	Inactivado	Antígeno de Superficie		
Rabia	Inactivado	Hepatitis B	Antígeno de	
Rotavirus	Vivo atenuado		Antígeno de superficie	
Rubeola	Vivo atenuado		recombinante	
Varicela	Vivo atenuado		(HbsAg)	


VACUNAS TOXOIDES


- La purificación de exotoxinas bacterianas e inactivación con formaldehido forman el toxoide
- Induce anticuerpos antitoxoide capaces de unirse a la toxina y neutralizar sus efectos
- Contra Difteria y Tétanos

VACUNAS DE POLISACÁRIDOS

- Induce la formación de anticuerpos opsonizantes
- Activa a las cél B en una forma timoindependiente, con producción de IgM y poco cambio de clase, sin maduración por afinidad, ni memoria
- Limitación: Incapacidad de activar a las Th
- Contra S pneumoniae y N meningitidis
- H influenzae tipo b → polisacárido conjugado a una proteína transportadora, activa a las Th, cambio de clase de IgM a IgG, induce cél B de memoria pero no cél T de memoria

VACUNAS DE POLISACÁRIDOS

VACUNAS DE ANTÍGENOS RECOMBINANTES

 Genes que codifican proteínas inmunogénicas pueden ser clonados en bacterias, levaduras o células de mamíferos y los Ags expresados usados para el desarrollo de vacunas

VACUNAS DE ANTÍGENOS RECOMBINANTES: VACUNA CONTRA LA HEPATITIS B

Clonación del gen para el Ag de superficie del VHB (Ags VHB) en células de levadura

Células de levadura crecen en cultivos y el Ags VHB se acumula intracelularmente

La célula es fraccionada por alta presión, liberando el Ags VHB recombinante

Purificación del Ags VHB recombinante

Induce la producción de anticuerpos protectores


VÍAS DE ADMINISTRACIÓN

Parenteral
 Intramuscular
 Intradérmica
 Subcutánea

Intranasal

TIEMPO

- La historia natural de la enfermedad determina la edad a la cual se debe aplicar la vacuna
- Intervalo entre dosis y refuerzo depende de los resultados de las investigaciones de vacuna
- Persistencia de Ac maternos determina la edad de la inmunización contra el sarampión, parotiditis, rubeola

Además de los inmunógenos las vacunas contienen:

Preservativos	Timerosal
Previenen la contaminación bacteriana o fúngica	Fenol, Fenoxietanol
Adyuvantes	Sales de aluminio
Incrementan la respuesta inmune Ag específica	
Aditivos	Gelatina
Estabilizan los virus vivos atenuados	Albúmina humana
Residuos	Formaldehido
Usadas durante el proceso de manufactura	Antibióticos
	Proteínas del huevo
	Proteínas de levaduras

ADYUVANTES

- 'Adyuvante del latín adjuvare que ayuda
- Potencian la respuesta inmune contra un Ag
- Pueden ser: sales de aluminio, citoquinas, aceites, bacterias muertas por calor
- EFECTOS de las sales de aluminio:
 - Enlentecen la liberación del Ag
 - Incrementan la ingestión del Ag por las APC
 - Inducen la producción de citoquinas y complemento
- Reacciones adversas: eritema, nódulos subcutáneos, hipersensibilidad por contacto e inflamación granulomatosa

	TEMPRANAS	TARDIAS
LOCALES	Eritema, edema, dolor en el sitio de inyección	Ulceración, cicatriz
GENERALES	Fiebre, llanto prolongado, síncope, convulsiones, hipotonía, anafilaxia	Encefalitis, encefalopatía, daño cerebral

- Reacciones de hipersensibilidad tipo I
 Aparece a los 30 min de aplicada la inyección
 Producida por la presencia de IgE específica
 Reacciones tipo urticaria, anafilaxia
- Reacciones de hipersensibilidad tipo III
 Aparece entre las 6 y 24 horas
 Producida por depósito de complejos inmunes
- Reacciones de hipersensibilidad tipo IV
 Aparece 24 a 48 horas de aplicada la inyección
 Producida por linf T sensibilizados contra el Ag vacunal
 Infiltrado de neutrófilos, macrófagos y linfocitos

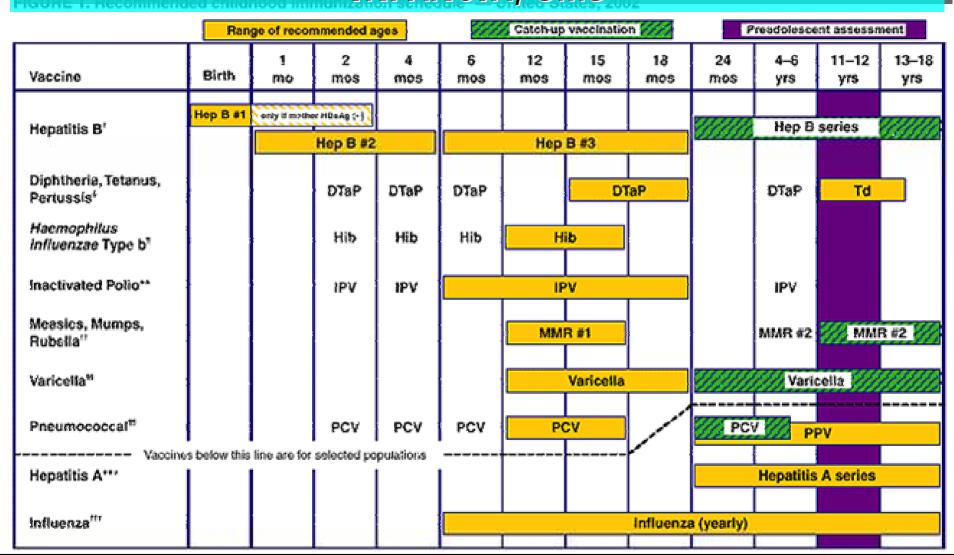
- Sarampión: fiebre alta, erupción, encefalopatía desmielinizante (1:1 millón)
- Rubéola: artralgias, artritis
- Influenza: Sindrome Guillain-Barré (1:1 millón)

X DPT:

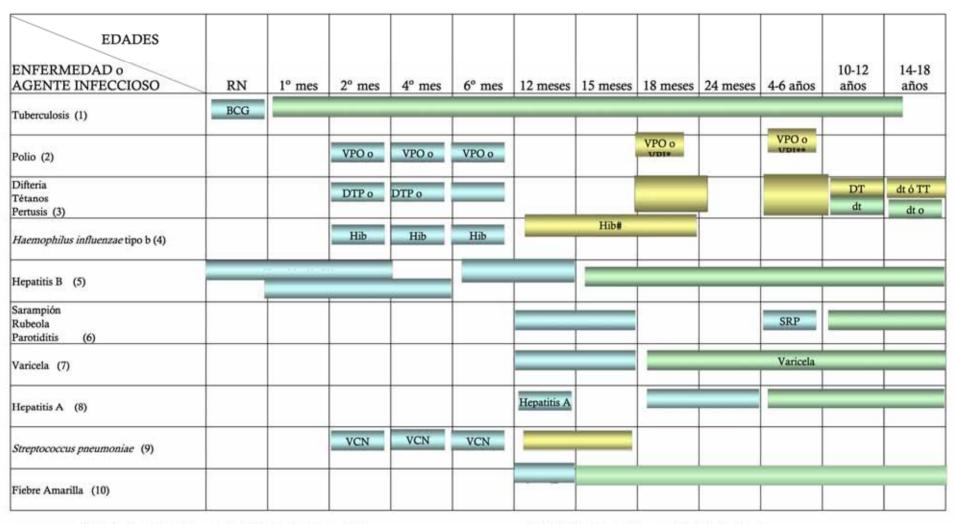
- -Componente *pertussis* de bacterias completas muertas responsable de la mayoría de las reacciones locales y sistémicas, inducción de daño cerebral??
- Vacunas acelulares (DPTa) ➤ menos reacciones adversas

➤ Poliovirus oral (Sabin):

- -Los virus se replican en el intestino y se excretan en las heces
- -Se puede ver reversión parcial o total de la atenuación de los virus
- -Poliomielitis paralítica en vacunados o contacto estrecho (1:1 millón)


CONTRAINDICACIONES DEL USO DE VACUNAS

- Alergia a algunos de los componentes de la vacuna (anafilaxia)
- Vacunas de organismos vivos contraindicadas en:


Embarazadas

Individuos que reciben corticoesteroides, inmunosupresores, radiación o con defectos congénitos o adquiridos de la inmunidad celular (inmunodeficiencia combinada severa, leucemia, linfomas, enfermedad de Hodgkin e infección por VIH)

ESQUEMA DE INMUNIZACIÓN RECOMENDADO EN LA INFANCIA, OMS

ESQUEMA DE INMUNIZACIÓN EN PEDIATRÍA. RECOMENDACIONES PARA VENEZUELA, AÑO 2004 SOCIEDAD VENEZOLANA DE PUERICULTURA Y PEDIATRIA

Edad y/o Rango de edad para administración de esquema básico

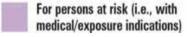
Rango de edad para administración en caso de no haber recibido esquema básico

Addendum

Edad y/o Rango de edad para administración de refuerzo

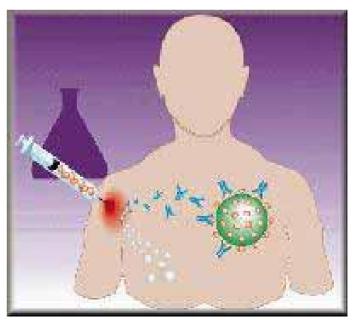
En discusión su uso rutinario en niños sanos mayores de 6 meses

Los pacientes que no hayan sido inmunizados a la edad recomendada, deberán recibir el esquema en cualquier momento, respetando las indicaciones y contraindicaciones especi ficas para cada vacuna.


Recommended Adult Immunization Schedule by Vaccine and Age Group UNITED STATES · OCTOBER 2004—SEPTEMBER 2005

*Covered by the Vaccine Injury Compensation Program. See Footnotes for Recommended Adult Immunization Schedule on back cover.

For persons lacking documentation of vaccination or evidence of disease


VACUNACIÓN PARA LOS VIAJES AL EXTRANJERO

- Hepatitis A
- Hepatitis B
- Fiebre tifoidea
- Fiebre amarilla
- Tétanos-Difteria
- Meningococo
- Rabia
- Polio

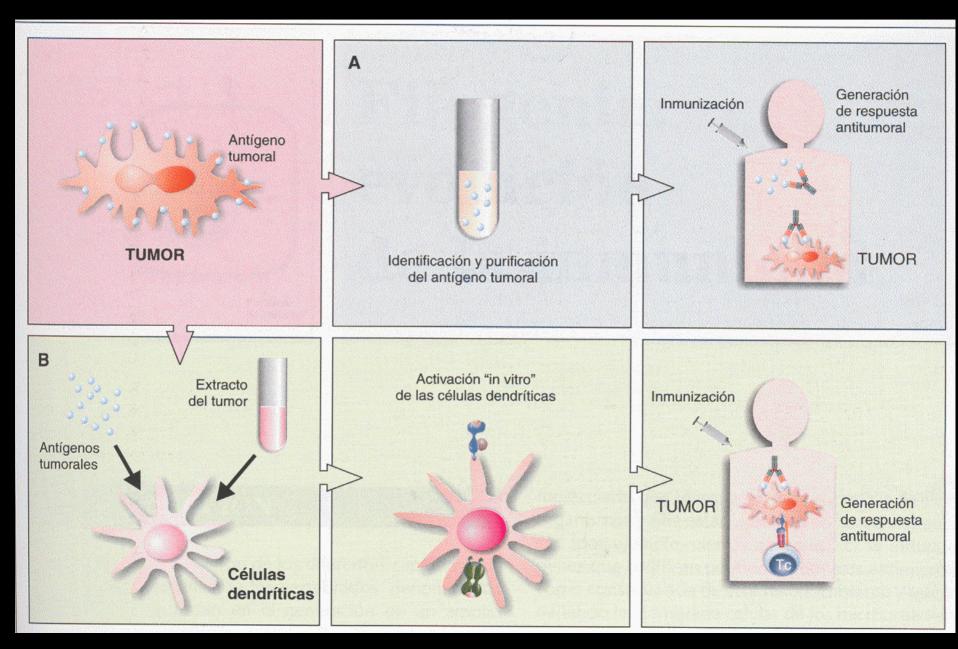
NUEVAS ESTRATEGIAS DE VACUNAS

- Administración a través de las mucosas
- VACUNAS TERAPÉUTICAS
- VACUNAS DE VECTORES RECOMBINANTES
- VACUNAS ADN

ADMINISTRACIÓN A TRAVÉS DE LAS MUCOSAS

VENTAJAS

- Mayor comodidad
- •Estimulación de RI en las mucosas que no suele estimularse por la aplicación de inyecciones



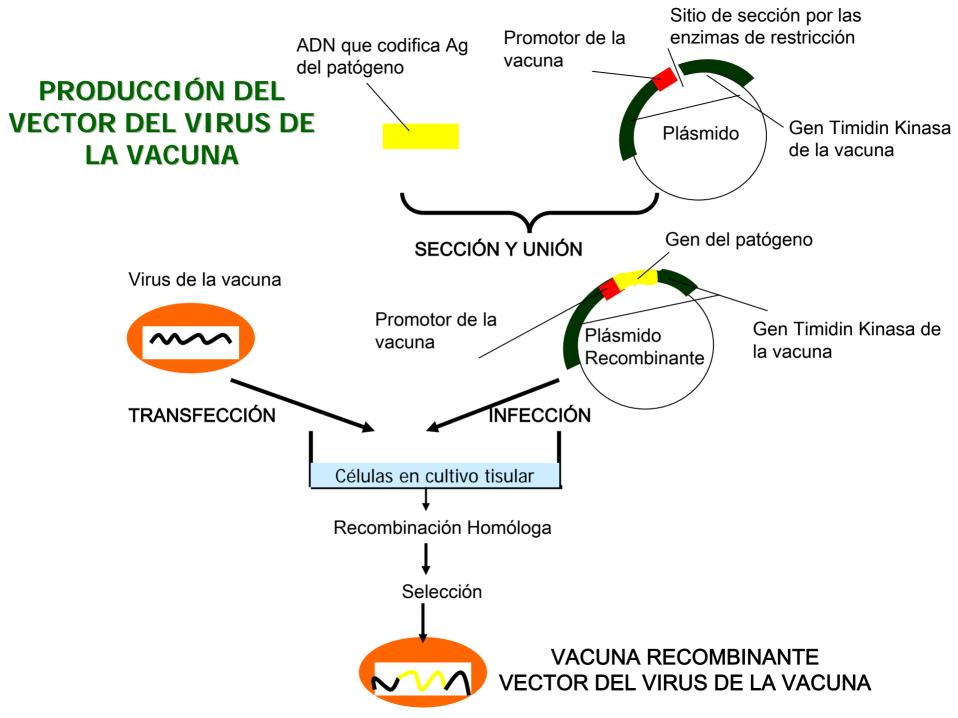
REQUERIMIENTOS

- Presentación adecuada del fármaco
- Uso de adyuvantes especiales

VACUNAS ANTITUMORALES

VACUNAS DE VECTORES RECOMBINANTES

- Introducción de genes que codifican Ags de patógenos en virus o bacterias atenuadas
- Los organismos atenuados sirven como vectores, se replican y expresan el producto genético del patógeno dentro del huésped
- Vectores de vacunas: virus atenuado de la vacuna contra la viruela (virus de la vacuna), canarypox, poliovirus atenuado, adenovirus, cepas atenuadas de salmonela y la cepa BCG del mycobacterium bovis


VACUNAS DE VECTORES RECOMBINANTES

VENTAJAS:

Inducen respuesta inmunitaria humoral y celular

DESVENTAJAS

Los vectores virales pueden infectar células del huésped y producir Ags que estimulan respuesta CTL que destruyan éstas células

VACUNAS ADN

- ADN que codifica proteínas antigénicas del patógeno es insertado en un plásmido
- EL ADN plasmídico es inyectado directamente en el músculo del receptor
- Se genera una respuesta inmune a la proteína antigénica codificada por el ADN plasmídico


VENTAJAS:

Inducen respuesta inmunitaria celular y humoral

Los plásmidos bacterianos inducen respuesta inmune innata por poseer nucléotidos CpG (PAMP) que son reconocidos por los macrófagos

No requieren refrigeración

Permite expresar varias proteínas antigénicas del mismo o diferentes patógenos, además de otras proteínas que aumentan la respuesta inmunitaria (citoquinas, coestimuladores)

BIBLIOGRAFÍA RECOMENDADA

- Parslow T, Stites D et al. Inmunología Básica y Clínica. 10 ma Edición.
 Manual Moderno. 2002
 - Goldsby R et al. Kuby Inmunología. Mc Graw Hill. 2004