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Abstract In the recent years, breakthrough advances in the
characterization of the tumor-infiltrating immune cells and in
the understanding of their influence on tumor invasion and
metastasis have been accomplished. These studies have
allowed the development of assays quantifying immune infil-
trates to predict patient’s clinical outcome. Increasing evi-
dence supports their utility as prognostic and potentially
teragnostic markers. The in-depth characterization of the tu-
mor’s immune profile and the standard histopathological
criteria are becoming the optimal method of tumor classifica-
tion in the era of personalized medicine. This review describes
the major concepts in the anti-tumor immunity field, with
particular focus on the tumor immune microenvironment
and the delicate balance between inflammatory and anti-
tumor immune responses, its importance as a prognostic tool,
and its utility as a teragnostic marker for patients receiving
new-generation immunotherapies.
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Introduction

The fact that tumors often grow in sites of chronic inflamma-
tion led Rudolf Virchow to propose a link between the im-
mune system and cancer more than a century ago [1]. This
hypothesis was proven accurate, and it is widely accepted that
both inflammatory and immune cells can not only promote
tumor development but also contribute to their elimination
[2, 3]. At first, it could seem contradictory that the immune
response could play a dual role in this process. Therefore, it is
important to understand that the cellular and molecular medi-
ators underlying both effects are different.

Inflammation and cancer

Several lines of evidence have established an association be-
tween chronic inflammation and cancer [2]. First, approxi-
mately 20 % of the tumors are linked to inflammation-
inducing infectious organisms [4], including Helicobacter
pylori and gastric cancer [5], hepatitis B and C viruses and
hepatocellular carcinoma [6], and human papilloma virus and
cervical and head/neck cancers [7, 8]. Second, chronic nox-
ious stimuli or inflammatory diseases can favor neoplasia,
such as cigarette smoke and asbestos/silica for lung carcinoma
[9], gastroesophageal reflux for cancer of the esophagus [10],
inflammatory bowel disease for colorectal cancer (CRC) [11],
chronic pancreatitis for pancreatic cancer [12], and pelvic in-
flammatory disease for ovarian cancer [13]. Third, the chronic
intake of nonsteroidal anti-inflammatory drugs inversely cor-
relates with CRC incidence, and recent studies indicate a neg-
ative effect of aspirin consumption on tumor growth [14].
Finally, the neutralization of inflammatory mediators (e.g.,
cytokines and pro-inflammatory transcription factors) de-
creases the incidence and spreading of tumors both in mice
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and in humans [15, 16]. Table 1 lists cancers where a chronic
inflammation has been implicated in their pathophysiology.

The mechanisms directing inflammation-induced tumori-
genesis are well known. DNA damage and extracellular ma-
trix disruption by inflammatory mediators (e.g., through the
production of reactive oxygen species [17] and matrix metal-
loproteinases [18], respectively), in addition to the stimulation
of tumor cell growth by cytokines (e.g., IL-1B for gastric
carcinoma [19] and IL-8 for melanoma [20]), are the main
recognized tumor-promoting mechanisms.

Not surprisingly, once a tumor has emerged, an inflamma-
tory microenvironment can also promote malignant cell
growth, resulting in neo-angiogenesis, acquisition of new mu-
tations, extracellular matrix disruption, tumor cell migration,
and finally metastasis [21]. The main cellular mediators of this
process are macrophages (and to a lesser extent neutrophils)
that are, by far, the major immune cellular component of
tumor infiltrates [22]. These cells produce high quantities
of IL-1β, IL-6, IL-23, and TNF-α, the key cytokines

mediating the inflammation-induced tumorigenesis
(reviewed in [21] and [22]).

Immune control and tumor escape

In addition to the link between inflammation and tumorigen-
esis, other cellular and molecular mediators of the immune
system can contribute to control of tumor growth and elimi-
nation. Several epidemiological observations support this fact,
including scarce reports of spontaneous cancer regression
[23], the increased incidence of cancer in immunosuppressed
individuals [24] and the association between increased tumor-
infiltrating T cells (TIL) and favorable clinical outcome
[3, 25].

The fact that tumor cells express antigens encoded by mu-
tated genes [26] often renders them targets of the immune
cells. Indeed, autologous TIL can induce tumor cell lysis
in vitro and in vivo [27], and tumor-specific lymphocytes
are often detected in patients with cancer. This phenomenon
has been well characterized in CRCs, where microsatellite
instability (MSI, a genetic defect that impedes DNAmismatch
repair) fosters the expression of thousands of new antigens on
tumor cells. Characteristically, MSI+ tumors have a prominent
CD8+ T cell infiltration and are associated with favorable
clinical outcome [28].

The major cellular mediators of the anti-tumor immune
response are the CD8+ T cells, in addition to the Th1-
oriented CD4+ lymphocytes. The first are in charge of the
elimination of tumor cells through the production of
apoptosis-inducing molecules or cytotoxic granules (e.g.,
granzymes, perforin, and granulysin) [29], while the latter
can provide help to the CD8+ T cells and foster the anti-
tumor response by the secreting major cytokines, including
IFN-γ [30]. Several lines of evidence suggest that mature
dendritic cells (DC) orchestrate the T and B cell anti-tumor
immune response. Characteristically, these cells are present in
highly organized peritumor immune cellular aggregates,
called tertiary lymphoid structures (TLS) [31] (discussed in
the next section).

The major anti-tumor immune response cytokines and
chemokines are IFN-γ, IL-12, CXCL9 and CXCL10, mainly
involved in CD8+ T cell recruitment (CXCL9 and CXCL10)
and activation (IL-12 and IFN-γ) [32, 33].

All these processes submit tumor cells to a significant se-
lective pressure. In fact, tumor cells can develop mechanisms
that modulate and/or inhibit the immune response, including
as follows: first, the production of immunosuppressive mole-
cules (e.g., IL-10 and TGF-B) that hamper the cytotoxic and
proliferative capacity of T cells [34] and, second, the expres-
sion of ligands for inhibitory receptors expressed on the TIL
[35]. Of particular relevance, PD-1 is a molecule expressed on
activated and exhausted T cells that diminishes the strength of

Table 1 Cancers associated with chronic inflammatory conditions

Inflammatory process Associated neoplasia

Infectious etiology

Human papilloma virus Cervical cancer and head/
neck cancer

Hepatitis B and C virus Hepatocellular carcinoma

Epstein-Barr virus Nasopharynx cancer and
lymphoma

Human herpes virus type 8 Kaposi’s sarcoma

Helicobacter pylori Gastric cancer

Schistosoma haematobium Bladder cancer

Opisthorchis viverrini and
Clonorchis sinensis

Hepatocellular carcinoma

Chronic noxious stimuli

Tobacco smoke Lung cancer, esophageal
cancer, etc.

Silica Lung cancer

Asbestos Mesothelioma

Alcohol intake Esophageal cancer

Chronic pelvic inflammatory disease Ovarian cancer

Aflatoxins Hepatocellular carcinoma

Chronic inflammatory diseases

Gastroesophageal reflux and Barret’s
esophagus

Esophageal cancer

Type A gastritis Gastric cancer

Chronic pancreatitis Pancreatic cancer

Inflammatory bowel disease Colorectal cancer

Chronic osteomyelitis Bone cancer

Hashimoto’s thyroiditis Thyroid lymphoma

Thyroiditis Papillary thyroid cancer

NASH, Hemochromatosis Hepatocellular carcinoma
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the cellular immune response upon binding to its ligands (PD-
L1 and PD-L2) [36]. Under physiological conditions, the ex-
pression of PD-L1 and PD-L2 is highly regulated, and it is
limited to dendritic cells, macrophages, activated T cells (PD-
L1 only) [37], and certain tissues where immunomodulation is
required (e.g., syncytiotrophoblast in the placenta). Neverthe-
less, tumor cells can express these ligands and subsequently
inhibit T cell activity. Similar mechanisms have been reported,
including the expression of the ligands for TIM-3 and LAG-3,
two additional inhibitory receptors expressed on T cells
(reviewed in [35]). Ultimately, this microenvironment induces
the development of suppressive immune cells, including
CD4+ Tregs and myeloid-derived suppressor cells [34], that
sustain self-tolerance against tumor antigens.

This complex interconnected network of myeloid and lym-
phoid cells, endothelial and lymphatic vessels, and stromal
cells—named the tumor microenvironment [3, 38]—has been
largely studied in the last decade. Its influence on patient’s
clinical outcome and tumor progression has been of particular
interest: Patients with tumors that develop immunosuppres-
sive mechanisms have the worst prognosis, and their tumors
will often display a higher histological grade characterized by
dedifferentiation, neo-vascularization, and an inflammatory
infiltrate.

The immune microenvironment as a prognostic tool

Many studies have described the distribution of the inflamma-
tory and immune infiltrate within different tumors. Overall,
the macrophages, mast cells, and granulocytes are found infil-
trating both the invasive margin (IM) and the center of the
tumor. On the contrary, the lymphoid infiltration is more pre-
cisely distributed, and some locations are enriched in certain
cell types: NK cells are mostly found in the stroma and are not
in contact with tumor cells, B cells are mostly found in the IM
of the tumors within lymphoid aggregates, and T cells, partic-
ularly CD8+ T cells, are mainly located in the IM but can also
infiltrate the tumor center [3, 39].

The analysis of the immune microenvironment in retro-
spective cohorts across different tumors has established a clear
correlation between the density of infiltrating immune cells
and patient’s clinical outcome. Overall, a high infiltration by
CD8+ T lymphocytes and a cytotoxic signature are associated
with good clinical outcome in many tumor types, including
lung, liver, stomach, CRC, breast, esophageal, bladder, mela-
noma, ovarian, and prostate cancers (reviewed in [3]). How-
ever, there are exceptions to this rule, including diffuse large B
cell lymphoma [40], Hodgkin lymphoma [41], and clear-cell
renal cell carcinoma (ccRCC) [42], where high densities of
tumor-infiltrating CD8+ T and/or Th1 cells have been associ-
ated with poor prognosis. Overall, Th1 CD4+ T cells show a
similar clinical impact to that of CD8+ T cells, and the infil-
tration by other T cell subsets (Th2, Th17, and Treg) is less

clear and seems to be dependent on the cancer type [3]. Inter-
estingly, several reports have established that the expression of
cytotoxic associated molecules (e.g., TIA-1 or granzyme) im-
proves the prognostic power of CD8 cell densities in some
pathologies [43, 44].

Interestingly, lymphoid aggregates (TLS) can be detected
in the invasive margin of most tumors. Some of them exhibit
properties of active immune sites that resemble those arising
in other tissues upon infection or secondary to autoimmune or
chronic inflammatory diseases [31]. Characteristically, they
exhibit a T cell zone with embedded mature DC, germinal
centers with proliferating B cells, and they are surrounded
by high endothelial venules. How these structures are induced
is still unclear in human tumors. It has been hypothesized that
they represent an active local anti-tumor immune response,
where in situ antigen presentation and lymphocyte activation
can occur under a protected environment [31]. Indeed, the
density of TLS correlates with a memory Th1/cytotoxic tumor
signature and a favorable clinical outcome in lung cancer [45,
46], RCC [42], melanoma [47], and breast cancer [48, 49].

In view of the clinical impact of infiltrating CD8+ Tcells in
cancer, sustained efforts are being made to validate and pro-
mote their quantification in the routine clinical setting; this
approach has been called Immunoscore [50]. The develop-
ment of automatized software that quantify the densities of
immune cells after immunohistochemical staining is promot-
ing the gradual change from semiquantitative approaches to
quantitative and more powerful methods. Moreover, the quan-
tification of multiple immune cell populations is being cur-
rently studied and standardized and probably will help to ac-
curately assess the integral local anti-tumor immune response.
A recent technology that has started to gain importance is
multicolor immune histology: a method that simultaneously
detects and quantifies multiple markers in the same tissue
sample [51]. While this technique provides relevant informa-
tion regarding the co-expression and spatial relationships
among immune and other cells, it also highlights the need
for novel and more sophisticated systems for analysis.

The immune microenvironment
and other histopathological features

The link between the tumor immune infiltrate and other
pathology/clinical parameters has been assessed in indepen-
dent studies, and there is not yet a consensus on this matter.
Overall, tumors poorly infiltrated with CD8+ T cells often
display a higher histological grade, characterized by dediffer-
entiation, prominent vascularization, and inflammation. Two
independent studies in large cohorts of melanoma lesions
established a correlation between an increased lymphocyte
infiltration (known as higher TIL grade) and thinner lesions
(Clark level), smaller radial growth phase, lower stage, and
negative sentinel lymph nodes [52–54]. A similar picture has
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Table 2 Pathology parameters
and CD8+ T cell infiltration in
prevalent cancers

Cancer Analyzed immune parameter Associated pathology parameters Reference

Melanoma Not brisk or brisk infiltration
(TIL grade 2 or 3) vs. TIL absence

Negative sentinel lymph nodes [52]

[53]Lower mitotic rate

Lower Clark level/tumor thickness

Lower tumor grade [54]

Breast Increased stromal/intraepithelial
infiltration by CD8+ lymphocytes

Higher histological grade [58]

[62]

[63]

Lower stage [64]

ER-a (−) and/or PgR (−) tumor cells [62]

[58]

[63]

Basal phenotype [62]

[59]

Her2+tumor cells [63]

Ki-67 (−) tumor cells [64]
Negative lymph node invasion

Smaller tumors (<2 cm) [65]

Lung—NSCLC Increased stromal infiltration by
CD8+ lymphocytes

Moderate/Poor differentiation [66]

[67]

Lower stage [68]
Negative angiolymphatic invasion [69]

HCC Increased stromal/intraepithelial
infiltration by CD8+ lymphocytes

Lower stage (I–II vs. III–IV) [70]

Poorly differentiated tumors [71]

Pancreas Increased intratumor infiltration by
CD8+ lymphocytes

Decreased tumor depth [72]
Lower stage

Well-differentiated tumors [73]

RCC Invasive margin or intratumor CD8+
T cell infiltration

Higher nuclear grade [42]

[74]

Colorectal Increased CD8+ and CD45RO+
cell densities

Negative perineural invasion [52]

Lower T stage [51]

[53]

Negative lymph node invasion [75]

[76]

[77]

NSCLC non-small-cell lung cancer, HCC hepatocellular carcinoma, RCC renal cell carcinoma, ER-α estrogen
receptor-alpha, PgR progesterone receptor

Fig. 1 Association between
immune checkpoint expression,
nuclear grade, and overall
survival in ccRCC. IHC
photomicrographs of PD-1 (left
panels) and PD-L1 (right panels)
staining in two ccRCC (top and
bottom panels). The Furhman
Grade (FG) and survival time of
each patient are displayed. ccRCC
clear-cell renal cell carcinoma
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been described in CRC, where there is an inverse correlation
between the CD8+ and CD45RO+ (memory T lymphocytes)
cell densities and the tumor stage [55] and perineural invasion
[56]. Moreover, the density of innate cells increases, whereas
that of most other T cell subsets decreases along with tumor
progression in this pathology [57]. The association between
checkpoint expression, nuclear grade, and overall survival in
ccRCC is depicted in Fig. 1.

Nevertheless, this is not the case for all tumor types. Breast
and RCC deserve particular attention because both the basal
subtype in breast cancer and the inflammatory/inhibited sub-
type in RCC have been associated with an increased lympho-
cytic infiltration in advanced stages [42, 58–60]. Evidence
suggests that in these subtypes, the inflammatory microenvi-
ronment largely impacts the beneficial effect of lymphocytes,
while the latter exhibit a suppressed phenotype [38, 61]. The

link between pathology parameters and CD8+ T cell infiltra-
tion in most prevalent cancers is summarized in Table 2.

Therapies that modulate the tumor microenvironment

In view of the important immune processes taking place with-
in tumors, many therapies to boost the local immune response
and diminish the inflammatory or suppressor molecules are
being currently developed.

One of the first successful immunotherapies used in the
clinical setting was recombinant IL-2, whose aim was to acti-
vate and expand the intra-tumor T lymphocyte [78]. The treat-
ment of thousands of patients in the late 1980s and 1990s
established that only metastatic melanoma and metastatic
RCC responded to this therapy, and complete response rate
was limited to 10 % [78]. Because of the high rate of adverse

Fig. 2 Major
immunopathological events in
cancer natural history and
prognosis. A cartoon depiction of
the development and maintenance
of a cancerous lesion. Left panel:
Upon exposure to chronic
inflammatory stimuli, normal
cells can transform into neoplastic
cells. Afterward, the immune
selection can promote the
prevalence of more malignant and
less antigenic tumor cells.Middle
panel: main immune and
pathologic phenomena in cancer
natural history. Early stages are
generally characterized by
immunogenic tumor cells and a
subsequent CD8+ T cell
infiltration; on the contrary,
advanced tumor stages are
characterized by increased
densities of PD-1+/LAG-3+/
TIM-3+ cells, tumor or immune
expression of PD-L1/L2, high
histological grade, and
angiogenesis. Right panel:
clinical relevance of the
immunopathological tumor
characterization. Advanced tumor
stages are associated with poor
prognosis, and if they are
associated with particular
immunologic patterns, they will
more likely respond to
immunotherapies

Virchows Arch



effects, this therapy was replaced over the years, but it set a
precedent for the development of other immunotherapies:
Boosting the T cell response could mediate complete destruc-
tion of large, vascularized, and invasive cancers in humans.

Other immunotherapies used in similar clinical scenarios
are IFN-α and anti-angiogenic drugs (e.g., sunitinib and
bevacizumab). In metastatic RCC, sunitinib as monotherapy
has shown high objective response rates (up to 50 %) and
currently is the first-line treatment option for metastatic RCC
patients [79]. In addition to normalizing the tumor vasculari-
zation, this drug promotes anti-tumor immunity through dif-
ferent mechanisms [80].

New therapies based on the recent understanding of the
immune-suppressive cells and T cell inhibitor pathways are
being tested. The term checkpoint blockade describes the in-
jection of monoclonal antibodies specific for inhibitory recep-
tors expressed on the surface of lymphocytes (anti-PD-1, anti-
CTLA-4, and anti-LAG-3) or their ligands on tumor or other
suppressive immune cells (PD-L1 and PD-L2) [35, 81]. Sev-
eral trials on increasing number of malignancies are ongoing;
overall, they have shown exceptional results in some cancer
including melanoma [82, 83], RCC [84–86], lung cancer [84],
Hodgkin lymphoma [87], and bladder cancer [88].

Interestingly, the response rate of metastatic RCC to PD-1
blockade is approximately 25 % [84, 86]. Consistently, a re-
cent work by our group showed that one third of the primary
ccRCC displays a highly inflammatory/suppressive pheno-
type, characterized by high densities of PD-1+ and LAG-3+
T cells, in addition to the absence of TLS and PD-L1+/L2+
tumor cells [42]. Overall, these results suggest that this “sup-
pressive immune profile” should guide the selection of suit-
able patients to receive immunotherapies.

Indeed, the analysis of the tumor microenvironment is be-
coming a powerful tool to predict the response to immuno-
therapies. Interestingly, preliminary data from clinical trials of
PD-1 blockade suggest that the presence of (1) infiltrating
CD8+ or PD-1+ T cells [89] and/or (2) PD-L1+ tumor [84,
87, 90] or immune cells [89, 91] is the more sensitive param-
eter to predict the patients’ response to treatment [92].

Conclusions and perspectives

A significant amount of tumors develop under inflammatory
stimuli coming from infectious organisms or diverse patho-
logical processes. Once established, tumor cells express neo-
antigens encoded by mutated genes that can induce a specific
immune response. In this delicate balance, the selection pres-
sure favors tumor cells that produce, firstly, inflammatory
molecules that induce neo-vascularization, new mutations, tu-
mor growth, and metastasis and, secondly, molecules that
hamper the cellular immune response (Fig. 2). The character-
ization of the tumor infiltrates allows the identification of

tumors with the worst prognosis independently of tumor
stage, and evidence suggests that it could soon become into
a new pathological variable assessed in the routine clinical
setting.

Sustained efforts are currently made to develop therapeutic
agents to skew this tumor microenvironment toward an
adaptive/anti-tumor immune response, and promising ad-
vances in cancer treatment have been recently made. The
challenge toward personalized medicine is to effectively dis-
criminate the potential responders for each specialized thera-
py. Recent evidence points that this analysis should largely
rely on the pathological exploration of the tumor microenvi-
ronment, highlighting the central role of the pathologist in this
new era.
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