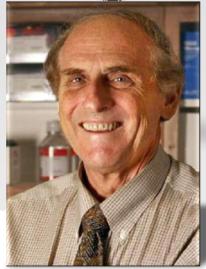


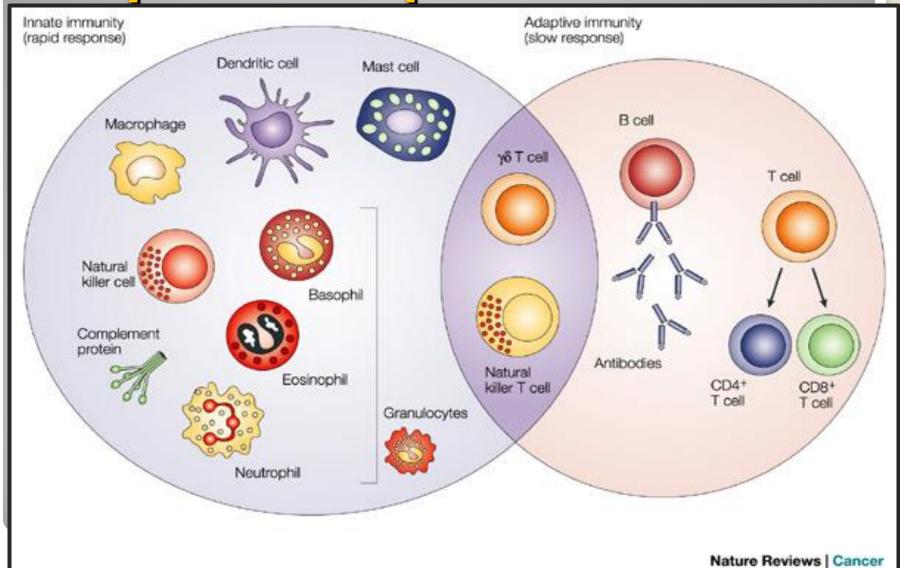
CONTENIDO

- Definición y características del sistema inmune innato
- Componentes del sistema inmune innato: barreras, sustancias solubles, células
- Reconocimiento de patrones asociados a patógenos
- Receptores de reconocimiento: descripción, señalización, regulación y modulación de respuesta inmune adaptativa
- Reconocimiento por elementos solubles
- Inflamación y respuesta antiviral
- Conexión del sistema innato y adaptativo

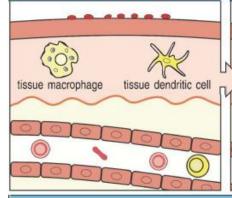

Premio Nobel en Fisiología y Medicina 2011

Jules Hoffmann

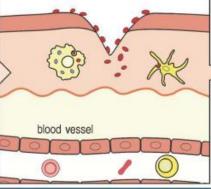
Bruce Beutler



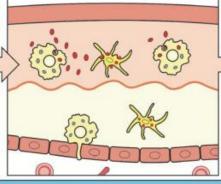
Ralph Steinman

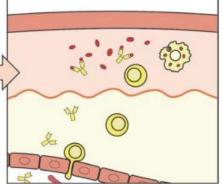

<u>Respuesta inmune</u> Respiratory tract Mediastinal nodes Axillary lymph nodes Gastrointestinal tract Lymphatic vessel Mesenteric nodes Spleen Arterial circulation Skin Antigen

enumni cizeuqzer eb zoqiT



Respuesta inmune

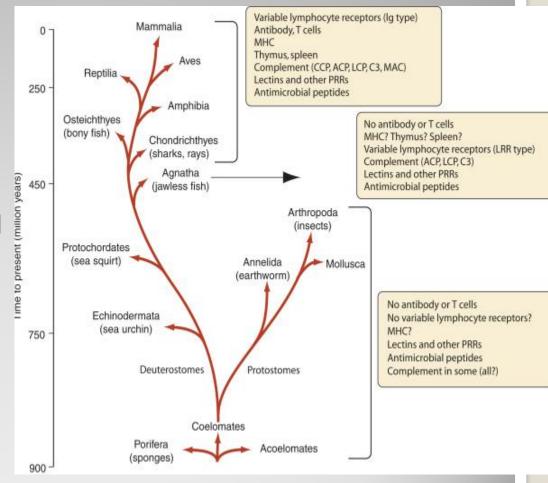



Local infection, penetration of epithelium

Local infection of tissues

Adaptive immunity

Protection against infection

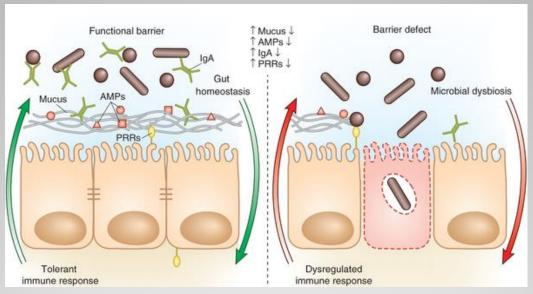

Normal flora Local chemical factors Phagocytes (especially in lung) Wound healing induced
Antimicrobial proteins and peptides,
phagocytes, and complement destroy
invading microorganisms

Complement, cytokines, chemokines
Phagocytes, NK cells
Activation of macrophages
Dendritic cells migrate to lymph nodes
to initiate adaptive immunity
Blood clotting helps limit spread of
infection

Infection cleared by specific antibody, T-cell dependent macrophage activation and cytotoxic T cells

Sistema inmune innato

- Sistema muy conservado y evolucionado
- Tiene como lecho una respuesta inflamatoria iniciada por macrófagos, polimorfonucleares y mastocitos a través de receptores de la immunidad innata
- Los defectos en este sistema son raros y casi siempre letales
- Reconocimiento de patógenos mediado por receptores: PAMPs (LPS y CpG de ADN bacteriano)


	Innate Immunity	Adaptive Immunity
Specificity	For structures shared by classes of microbes (pathogen- associated molecular patterns)	For structural detail of microbial molecules (antigens); may recognize nonmicrobial antigens
	Different microbes Identical mannose receptors	Distinct antibody molecules
Receptors	Encoded in germline; limited diversity (pattern recognition receptors) N-formyl methionyl receptor receptor receptor receptor	Encoded by genes produced by somatic recombination of gene segments; greater diversity TCR
Distribution of receptors	Nonclonal: identical receptors on all cells of the same lineage	Clonal: clones of lymphocytes with distinct specificities express different receptors
Discrimination of self and non-self	Yes; healthy host cells are not recognized or they may express molecules that prevent innate immune reactions	Yes; based on elimination or inactivation of self-reactive lymphocytes; may be imperfect (giving rise to autoimmunity)

Janeway C.A. And Medzhitov R. Ann Rev Immunol, 2002. 20:197-216. Abbas, 2012

Componentes de la inmunidad innata

Componente	Función		
Barreras			
Capas del epitelio	Prevenir la entrada de microorganismos		
Defensinas, linfocitos intraepiteliales	Muerte de microorganismos		
Células efectoras circulantes			
Neutrófilos	Fagocitosis temprana, muerte de microorganismos		
Macrófagos	Fagocitosis, muerte de microorganismos, activación de respuesta inflamatoria		
Células NK	Muerte de células infectadas, activación de macrófagos		
Proteínas efectoras circulantes			
Complemento	Muerte de microorganismos, opsonización, activación de leucocitos		
Lectina de unión a manosa (colectinas)	Opsonización, activación del complemento		
Proteína C reactiva (pentraxina)	Opsonización, activación del complemento		
Factores de coagulación	Compartalización de tejidos infectados		
Citocinas			
TNF, IL-1, quimiocinas	Inflamación		
ΙΕΝ-α y β	Resistencia a infecciones virales		
IFN- γ	Activación de macrófagos		
IL-12, !L-18, IL-23	Producción de IFN-γ por NK y células T		
IL-15	Proliferación de células NK		
IL-10, TGF- β	Control de la inflamación		

Funciones del sistema innato

- Detección de microorganismos y primera línea de defensa frente a la infección e invasión
- Regulación de la inflamación
- Mantenimiento de la homeostasis inmunológica
- Activación e instrucción de la respuesta inmunitaria adaptativa

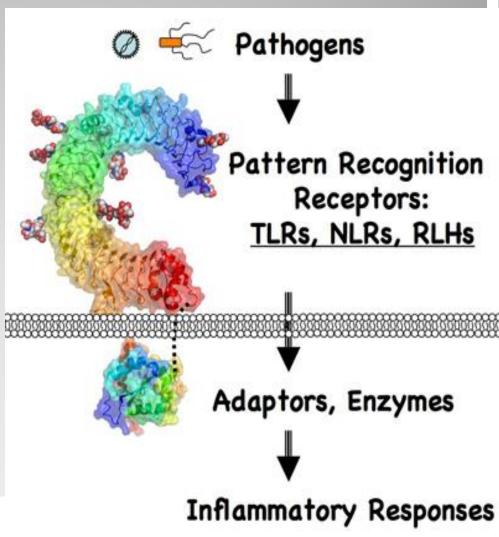
cienni enumni cimizoncess

- Basado en el reconocimiento de productos constitutivos conservados
- Pertenecientes a vías metabólicas únicas a los microorganismos y ausentes del hospedador, esenciales para la sobrevivencia del microorganismo, Ej: LPS, lipoproteínas, peptidoglicano y ácido lipoteicoico
- Permite la identificación de "huellas dejadas por los microorganismos", ausentes del hospedador: sensores de la presencia de infección

Nature Reviews | Microbiology

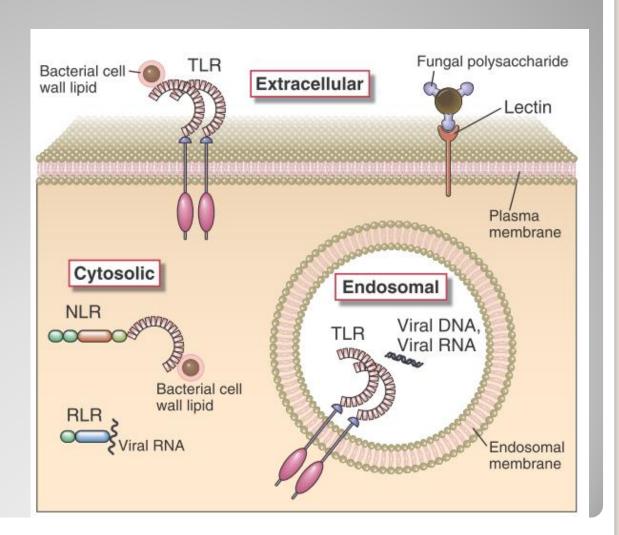
Mihai G. Netea, Gordon D. Brown, Bart Jan Kullberg & Neil A. R. Gow *Nature Reviews Microbiology* **6**, 67-78 (January 2008)

Receptores para el reconocimiento de patógenos y sus ligandos


Family	nily Member (major ligand)		
TLRs	TLR1 (triacyl lipopeptides), TLR2 (LTA ^a , zymosan, lipopeptides), TLR3 (dsRNA, polyI:C), TLR4 (LPS), TLR5 (flagellin), TLR6 (diacyl lipopeptides), TLR7 (ssRNA, R848), TLR8 (ssRNA, R848), TLR9 (CpG-DNA), TLR11 (profillin-like molecule)		
C-type lectin receptor	Mannose receptor (ligands bearing mannose, fucose, or N-acetyl glucosamine), DC-SIGN (ICAM-2/3, HIV gp120, <i>Mycobacterium tuberculosis</i> ManLAM), Dectin-1 (zymosan, β-glucans from fungi)		
Scavenger receptors	Scavenger receptor A (modified LDL, apoptotic cells), CD36 (oxidized LDL, apoptotic cells), MARCO (modified LDL)		
Complement receptor	s Integrins [CR3 (iC3b, β-glucan, fibrinogen), CR4 (iC3b, β-glucan, fibrinogen)], gC1qR (C1q), C5aR (C5a)		
IFN-inducible protein	s PKR (dsRNA), OASs (dsRNA)		
CARD helicases	RIG-I (uncapped 5'-triphosphate RNA), MDA5 (polyI:C, dsRNA from EMCV)		
NOD-like receptors NOD1 (iE-DAP), NOD2 (MDP), 14 NALPs [NALP1 (cell rupture), NALP1b (anthrax lethat NALP3 (bacterial mRNA, R848, extracellular ATP, uric acid crystals)], IPAF (Salmonella finale) NAIP5 (Legionella flagellin)			
Complement	C3 (carbohydrates and proteins on microbial surfaces), C1q (immune complexes, apoptotic cells)		
Pentraxins	SAP (LPS, C1q, apoptotic cells), CRP (PC, C1q, apoptotic cells), PTX3 (galactomannan, C1q, zymosan, apoptotic cells)		
Collectins	MBL (LPS, LTA, HIV gp120)		

Myeong Sup Lee and Young-Joon Kim Mol. Cells, Vol. 23, No. 1, pp. 1-10

PRR solubles

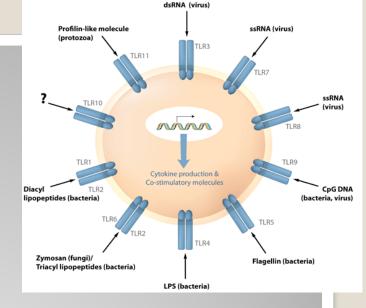

Receptores de la Inmunidad Innata

- Distintas clases de PRR dentro de ellos están los receptores Toll
- Funciones de activación de la cascada del complemento y fagocitosis. Iniciación de cascada de señalización que conduce a activación de la inmunidad innata
- Activación de inmunidad adaptativa
- Control mediante la participación de moléculas coestimuladoras, citocinas y quimiocinas (células dendríticas)

Receptores de la Inmunidad Innata

Localización celular:

Akira Shizuo. Curr Opin Immunol, 2003, 15:5-11.

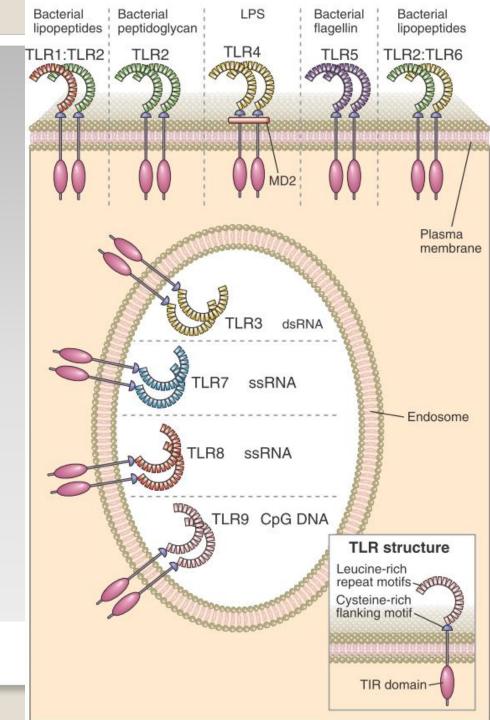

Pasare C. And Medzhitov R. Curr OpinImmunol, 2003, 15:1-6.

Goldstein DR. Curr Opin Immunol. 2004)

Takeda K and Akira S. International Immunol. 2005. 17:1, 1-14

Beufler B. Blood 2009

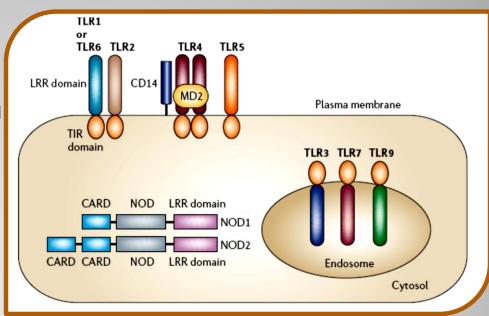
Receptores Toll (TLR)


- Reconocen bacterias, hongos y virus
- Reconocimiento de motivos altamente conservados: patrones moleculares asociados a patógenos (PAMPS)
- 13 receptores Toll hasta ahora descritos

Especificidad de los receptores Toll

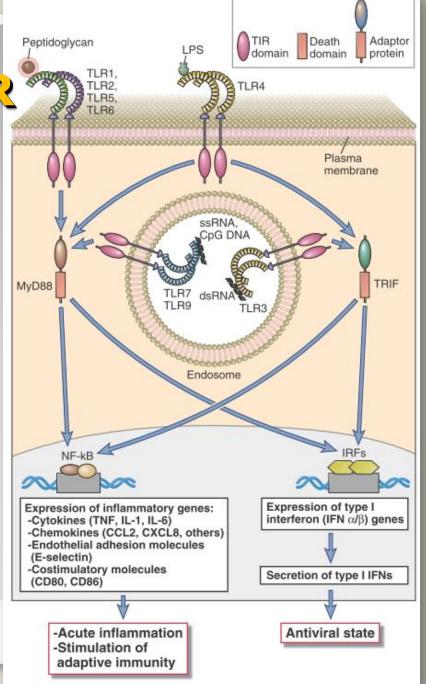
TLR	Ligandos	Microorganismos blanco	
TLR1	Triacil-lipopéptidos	Micobacterias	
TLR2	Peptidoglucanos Proteínas unidas a GPI Lipoproteínas Zimosán	Bacterias grampositivas Tripanosomas Micobacterias Levaduras y otros hongos	
TLR3	RNA bicatenario (dsRNA)	Virus	
TLR4	LPS Proteína F	Bacterias gramnegativas Virus sincicial respiratorio (RSV)	HSP60, fibrinogeno
TLR5	Flagelina	Bacterias	
TLR6	Diacil-lipopéptidos Zimosán	Micobacterias Levaduras y otros hongos	
TLR7	RNA monocatenario (ssRNA)	Virus	
TLR8	RNA monocatenario (ssRNA)	Virus	
TLR9	Dinucleótidos desmetilados CpG	DNA bacteriano	
	Dinucleótidos Infección por herpesvirus	Algunos herpesvirus	
TLR10,11*	Desconocido	Desconocido	Bacterias uropatógenas*

Receptores Toll (TLR)


- Expresados en superficie: TLR1, TLR2, TLR4, TLR5, TLR6 y TLR11
 - Sus ligandos son componentes de la membrana microbial: LPS, lipídos, lipoproteínas...
- Expresados en vesículas intracelulares (ER, endosomas, lisosomas: TLR3, TLR7, TLR8 y TLR9
 - Reconocen ácidos nucleicos

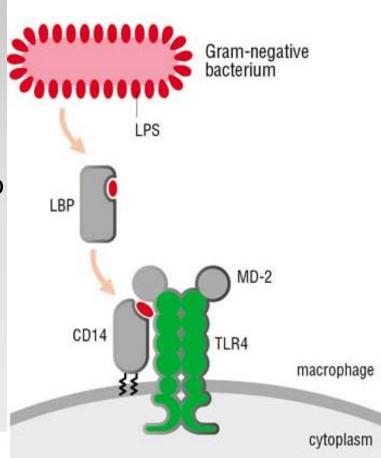
Receptores Toll (TLR)

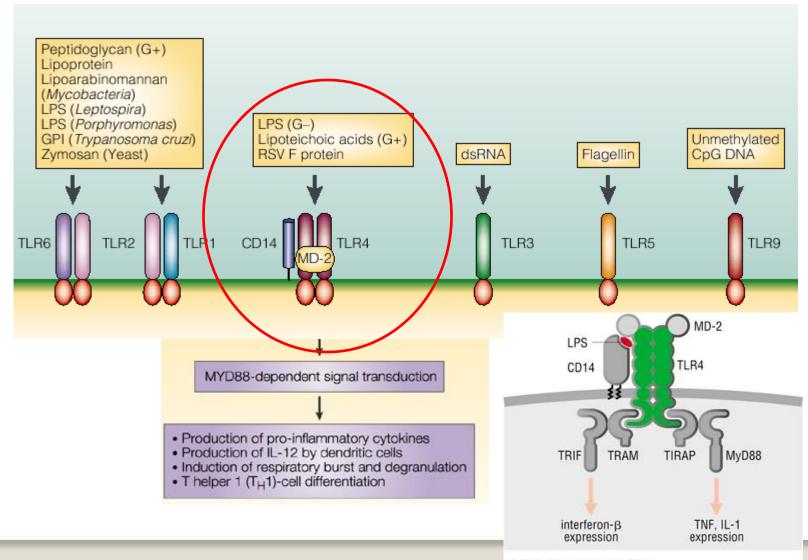
Estructura:


- Dominio extracelular rico en leucina (LRR)
- Dominio intracitoplasmático similar al receptor de IL-1 (TIR)

Señalización vía TLR

 Señalización a través de: MyD88, kinasa asociada al receptor de IL-1 (IRAK), factor asociado al receptor del TNF (TRAF), Map kinasas y (NF)-kB


 TLR3 no emplea la vía de MyD88


Reconocimiento de PAMPS mediado por TLR

TLR4:

- Primer receptor Toll reconocido, expresado en macrófagos y células dendríticas
- El LPS en circulación es capturado por LBP (proteína de unión de LPS). LPS-LBP es transferido a CD14 en la superficie de fagocitos.
- Participación de la molécula MD2, asociada a TLR4

Señalización vía TLR4

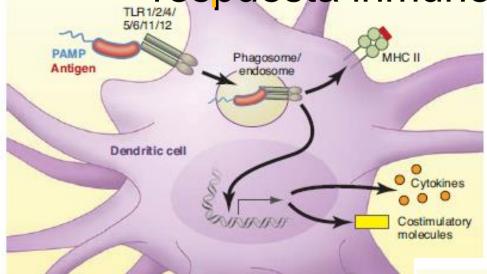
- Estudios iniciales mostraron que la estimulación simultanea de TLR2 y TLR4 resultó en la producción de TNF.
- Inducción preferencial de IL12p70
- Producción de mediadores inflamatorios es incrementada en forma sinérgica a través de la estimulación simultánea de TLRs
- La combinación de señales de TLR puede resultar también en una respuesta inhibitoria, Ej: la producción de IL-10

Cooperación de TLR en la respuesta celular

Papel de los receptores Toll en la respuesta inmune adaptativa

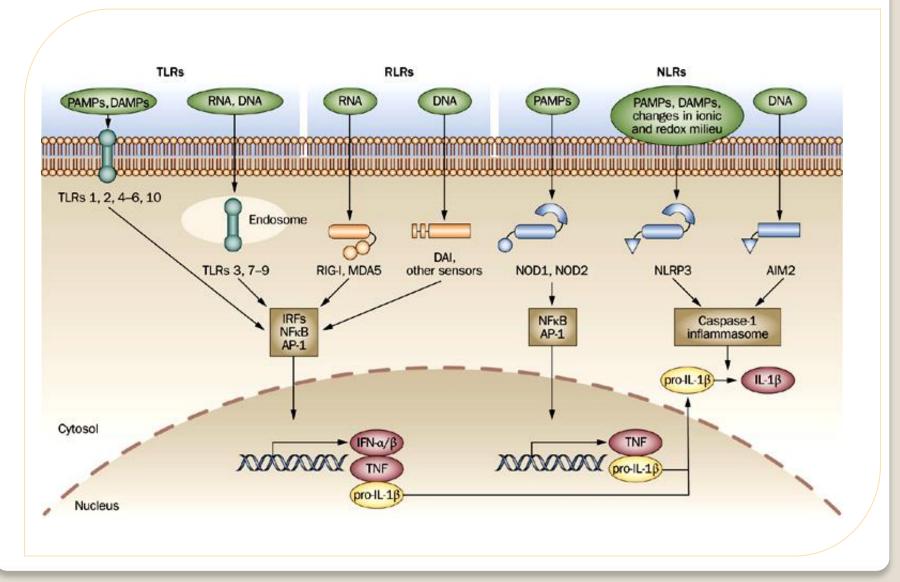
PAMP Antigen

Dendritic cell

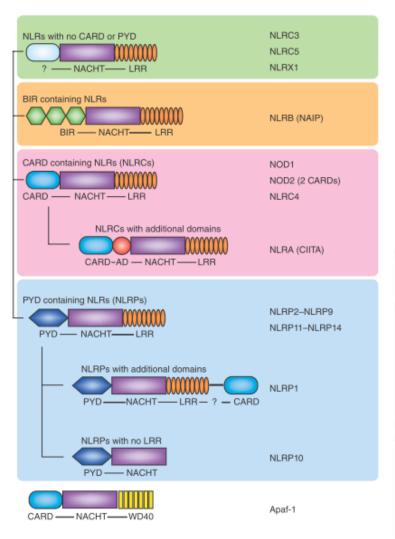

RIG-I

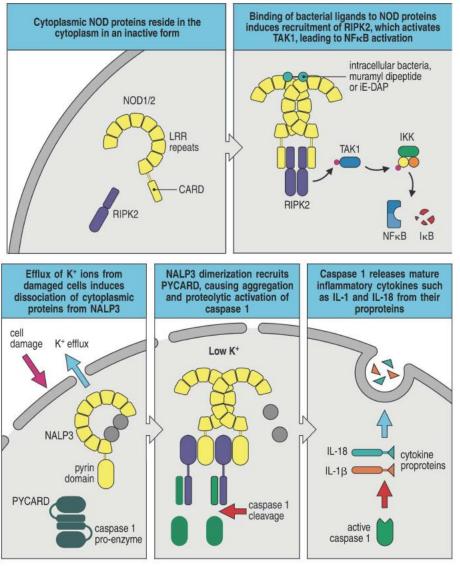
MHC II

Cytokines

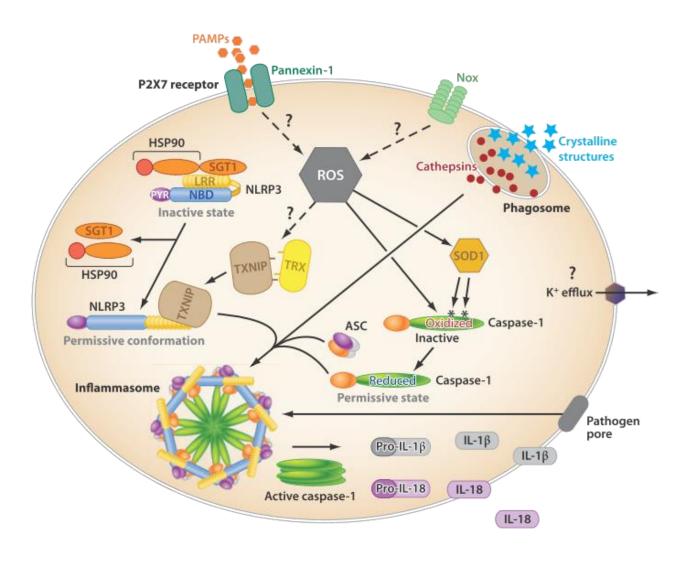

Costimulatory molecules

phagosome




Akiko lwasaki et al, Science 2010

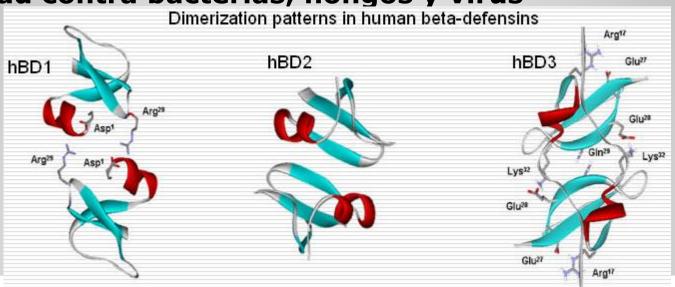
Receptores citoplasmáticos



Receptores NLR

Inflamosoma

Enfermedades asociadas


Síndromes autoinflamatorios.

		Gene Etiologic		Inflammasome	Anakinra
Disease	Clinical features	mutated	agent	involvement	response
Familial cold autoinflammatory syndrome (FCAS)	Fever, arthralgia, cold-induced urticaria	NALP3		overactive	yes
Muckle-Wells syndrome (MWS)	Fever, arthralgia, urticaria, sensorineural deafness, amyloidosis	NALP3		overactive	yes
Chronic infantile neurological cutaneous and articular syndrome (CINCA, NOMID)	Fever, severe arthralgia, urticaria, neurological problems, severe amyloidosis	NALP3		overactive	yes
Familial Mediterranean fever (FMF)	Fever, peritonitis, pleuritis, amyloidosis	Pyrin		overactive	partial
Pyogenic arthritis, pyoderma gangrenosum, and acne syndrome (PAPA)	Pyogenic sterile arthritis	PSTPIP1		overactive	yes
Hyperimmunoglobulin D syndrome (HIDS)	Arthralgia, abdominal pain, lymphadenopathy	Mevalonate kinase		to be demonstrated	yes
Tumor necrosis factor receptor-1-associated syndrome (TRAPS)	Fever, abdominal pain, skin lesions	TNF-R1		to be demonstrated	yes
Systemic juvenile idiopathic arthritis (SOJIA)	Chronic joint inflammation		unknown	to be demonstrated	yes
Adult-onset Still's disease (AOSD)	Arthralgia, fever		unknown	to be demonstrated	yes
Behcet's disease	Arthralgia, uveitis, ulcers		unknown	to be demonstrated	yes
Schnitzler's syndrome	Urticaria, fever arthralgia		unknown	to be demonstrated	yes
Gout	Metabolic arthritis, pain		uric acid (MSU)	activated	yes
Pseudogout	Arthritis		CPPD	activated	yes
Contact dermatitis	Urticaria		irritants	activated	unknown
Fever syndrome	Fever	NALP12		unknown	unknown
Hydatidiform mole	Hydatid mole	NALP7		unknown	unknown
Vitiligo	Skin depigmentation, automimmunity	NALP1		unknown	unknown

Péptidos antimicrobianos: Las defensinas

- Son polipéptidos de menos de 100 aa con actividad antimicrobiana a concentraciones fisiológicas. Dos miembros principales: defensinas y catelicidinas (LL37)
- α, β, θ defensinas: Hoja plegada beta, estructura de cisteínas con puentes disulfuro
 Distribución: mayor concentración presente en gránulos de almacenamiento. Células de Paneth en el intestino delgado. Leucocitos

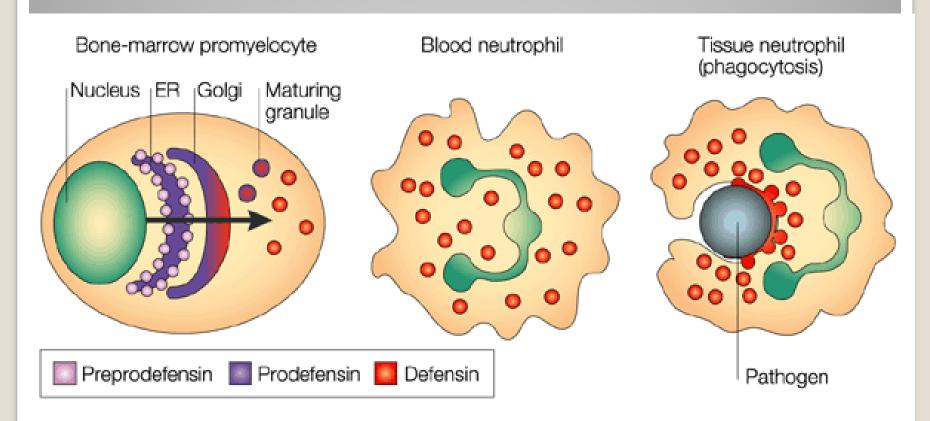
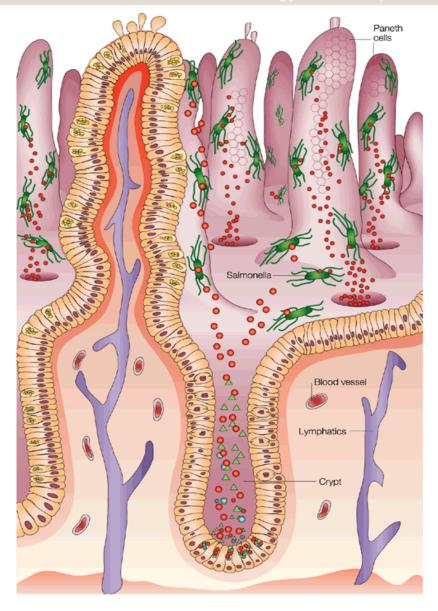

Actividad contra bacterias, hongos y virus

Table 1 Distribution and source of defensins			
Defensin	Tissue distribution	Cell source	Synthesis and regulation
HNP1, HNP2 and HNP3	Placenta, intestinal mucosa and cervical mucus plug	Neutrophils* monocytes, macrophages, natural killer cells, B cells and γδ T cells	Constitutive
HNP4	Not determined	Neutrophils*	Constitutive
HD5 and HD6	Salivary glands, small bowel, inflamed large bowel, stomach, eye, female genital tract (HD5 only), breast milk and inflamed urethral lumen	Intestinal paneth cells* and vaginal epithelial cells (HD5 only)	Constitutive or inducible, such as by sexually transmitted infection
HBD1	Oral and nasal mucosa, lungs, plasma, salivary glands, small and large bowel, stomach, skin, eyes, mammary glands, urogenital tract and kidneys	Epithelial cells*, monocytes, macrophages, monocyte-derived dendritic cells and keratinocytes	Constitutive or inducible in response to interferon-γ, lipopolysaccharide and peptidoglycan
HBD2 and HBD3	Oral and nasal mucosa, lungs, plasma, salivary glands, small and large bowel, stomach, skin, eyes, mammary glands, urogenital tract and kidneys	Epithelial cells*, monocytes, macrophages, monocyte-derived dendritic cells and keratinocytes	Inducible in response to viruses, bacteria, lipopolysaccharide, peptidoglycan, lipoproteins, cytokines (IL-1β, TNF) and growth factors
HBD4	Gastric antrum and testes	Epithelial cells*	Constitutive or inducible in response to PMA and bacteria

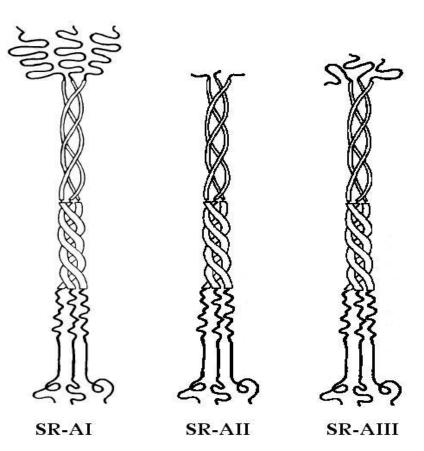

^{*}Main cellular source. HBD, human β -defensin; HD, human α -defensin; HNP, human neutrophil peptide; IL-1 β , interleukin-1 β ; PMA, phorbol 12-myristate 13-acetate; TNF, tumour-necrosis factor.

Sintesie y liberación de defensinas

Nature Reviews | Immunology

HNP: defensina α , péptido de los neutrófilos humanos

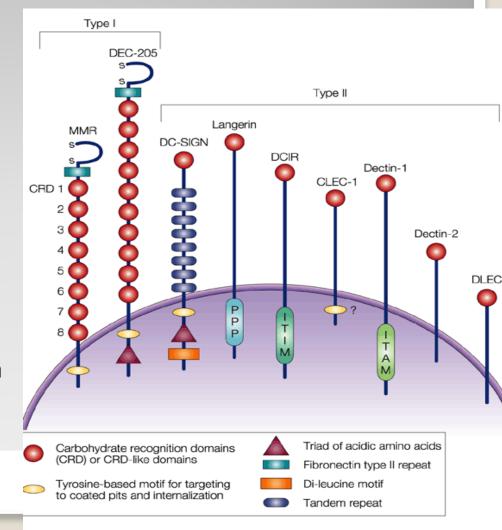
Acción
bactericida
de las
de las
defensinas:
papel de la
prodefensina 5,
defensina 5 y
tripsina a nivel de
las criptas


Nature Reviews | Immunology

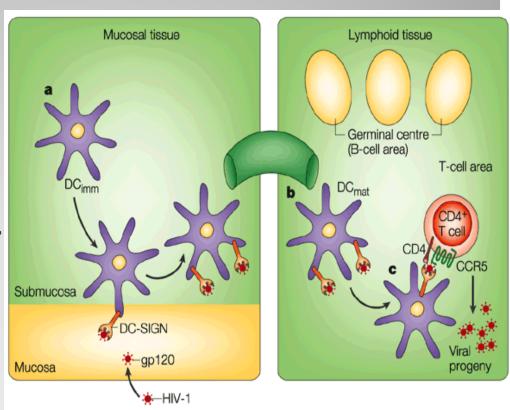
Papel de las defensinas en la infección contra el HIV Infected CD4+T cell HBD2 and HBD3 000 Mucosal epithelial **HNPs** cell **Nucleus** Neutrophil **PBMC** Macrophage Chemokines and cytokines HBD₂ and Recruitment of adaptive immune HBD3 Immature ↓CXCR4 dendritic cell response

Mary E. Klotman and Theresa L. Chang, Junio 2006

Receptores "Scavenger" en Inmunidad Innata


- Pertenecen al grupo PRR, expresados en células mieloides y células endoteliales
- Captura y eliminación de elementos propios transformados (ej: cel apoptóticas)
- Interacciones con bacterias
 - SR-AI y SR-AII:
 Expresados en la
 mayoría de
 macrófagos tisulares
 (no neutrófilos ni
 monocitos).

The class A macrophage scavenger receptor


Receptores lectinas tipo C en la inmunidad innata

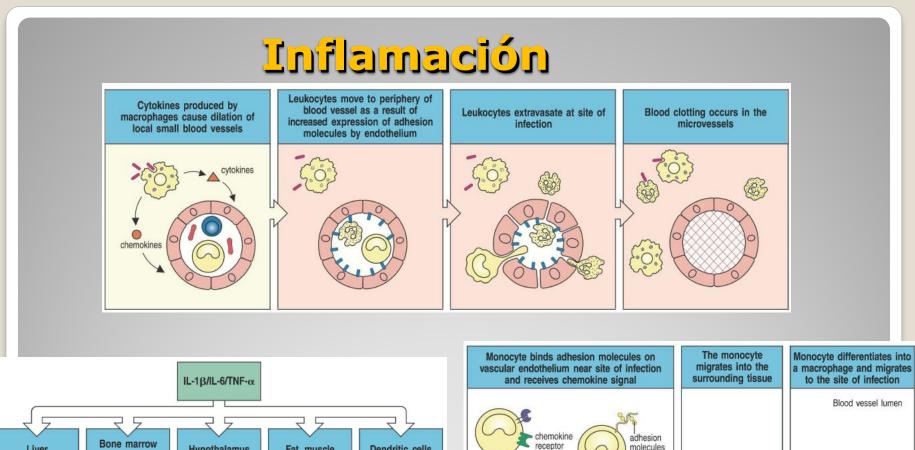
- Lectinas de tipo C se unen a azúcares en una manera dependiente de Ca utilizando residuos de carbohidratos altamente conservados (CRDs).
- Ejemplos de tipo solubles: Surfactante pulmonar (SPA y SPD), llamadas colectinas (colágeno+lectina).
- Al unirse a sus ligandos, las colectinas se asocian a receptores en la membrana promoviendo la fagocitosis

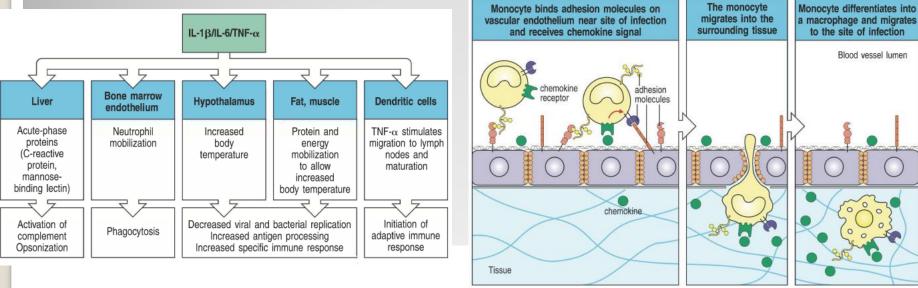
Receptores lectinas tipo C en la inmunidad innata

- Familia de receptores unidos a la membrana del tipo lectina: de tipo I (posee varios CRDs) y de tipo II (un solo dominio CRD)
- De tipo I: MMr, DEC 205
- De tipo II: Langerina, DC-Sign, induce proliferación de células T mediada por DC.

Nature Reviews | Immunology


Sistema inmunitario innato



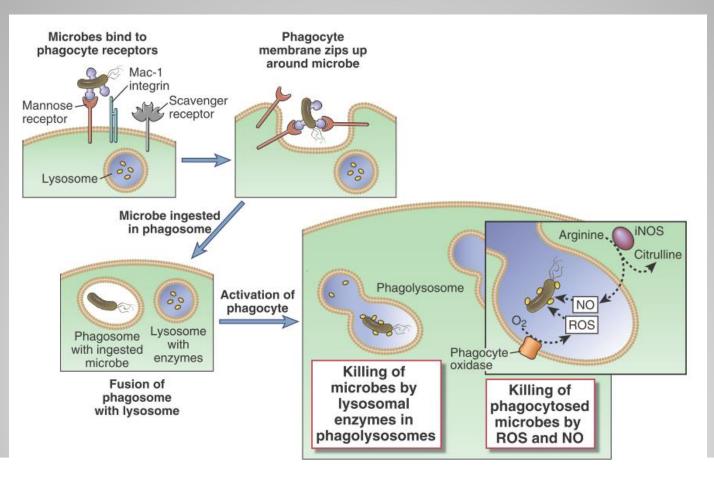

- Principales mecanismos de respuestas del sistema innato contra los patógenos:
 - Inflamación
 - Defensa antiviral

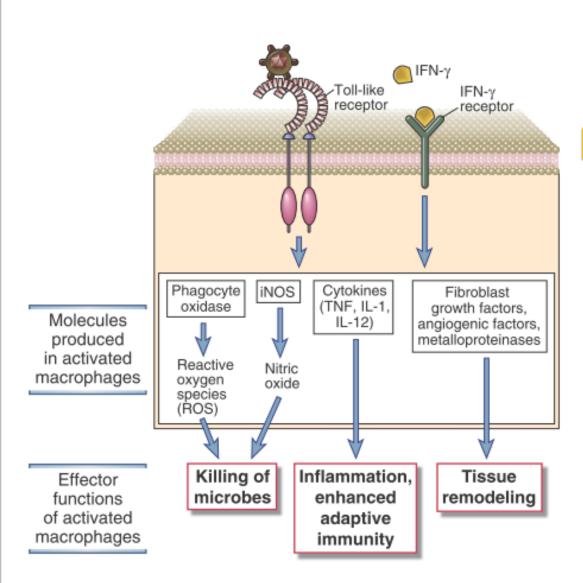
nòisemelini

- Consecuencia de la respuesta inmune
- Reacción compleja producida por el tejido vascular ante la agresión: infección, tóxina, lesión tisular
- Función protectora
 - Controlar la infección
 - Fomentar la reparación tisular
- Puede conllevar a:
 - Daño tisular
 - Enfermedad

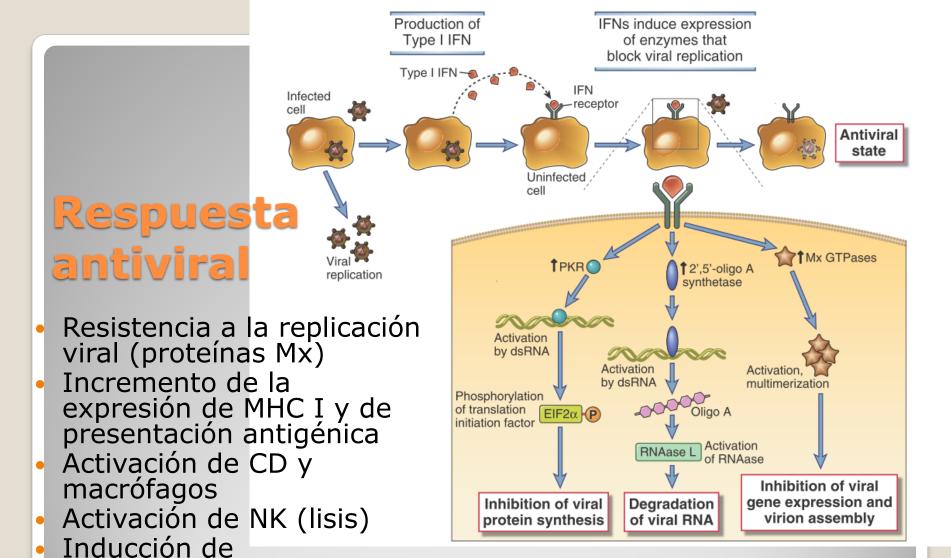
Roitt 2011. Abbas: Cellular and molecular immunology. 2012.

nòisemelinu




Inmunidad innata: Fagocitosis

- Principalmente por PMN y monocitos/macrófagos
 - Migración y llegada al sitio de la injuria
 - Comienzan a ingerir detritus celulares, bacterias y partículas extrañas
 - Reconocimiento en parte por PRR o receptores de patrón de reconocimient
 - <100 nm endocitosis, mediada por clatrina
 - >100 nm y multivalentes por fagocitos
 - Una vez ingeridas forman los fagosomas, los gránulos citoplasmático comienzan a fusionarse generando degranulación y formación de fagolisosoma

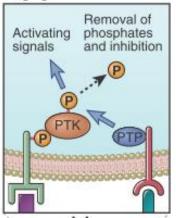


Fagocitosis y destrucción intracelular de microorganismos

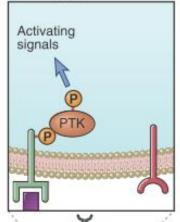
Papel de los macrófagos en la Inmunidad Innata

quemoquinas

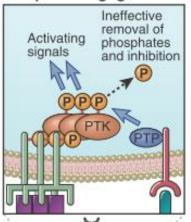
linfocitos

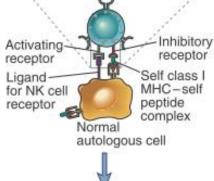

Recultamiento de

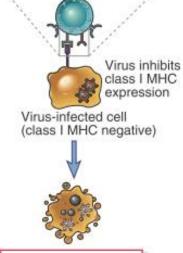
Origen y funciones de las células NK

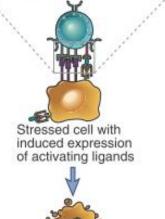

- Representan entre 5-20% de los linfocitos circulantes, 5% de los linfocitos esplénicos
- Expresión de CD56 y CD16, ausencia de CD3
- Producen citokinas: IFN- γ , TNF- α , Linfotoxina, IL-3, GM-CSF, IL-5, IL-13, IL-10, IL-8, MIP-1a, MIP-1b, entre otras.
- Deficiencia de NK, infecciones virales severas
- Resistencia contra: L. monocitogenes, malaria, T. gondii, Leishmania.

Activación de NK

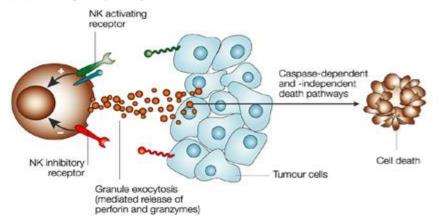

 A Inhibitory receptor engaged

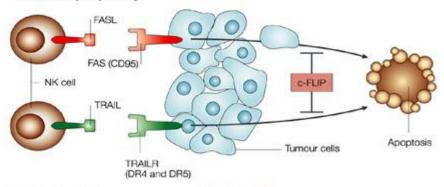


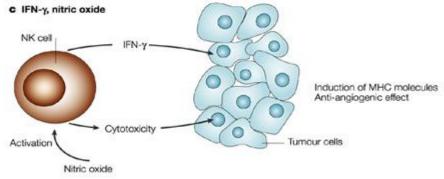

B Inhibitory receptor not engaged



Multiple activating receptors engaged

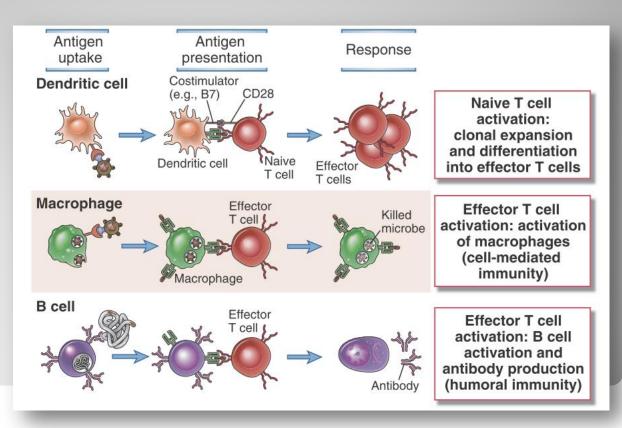


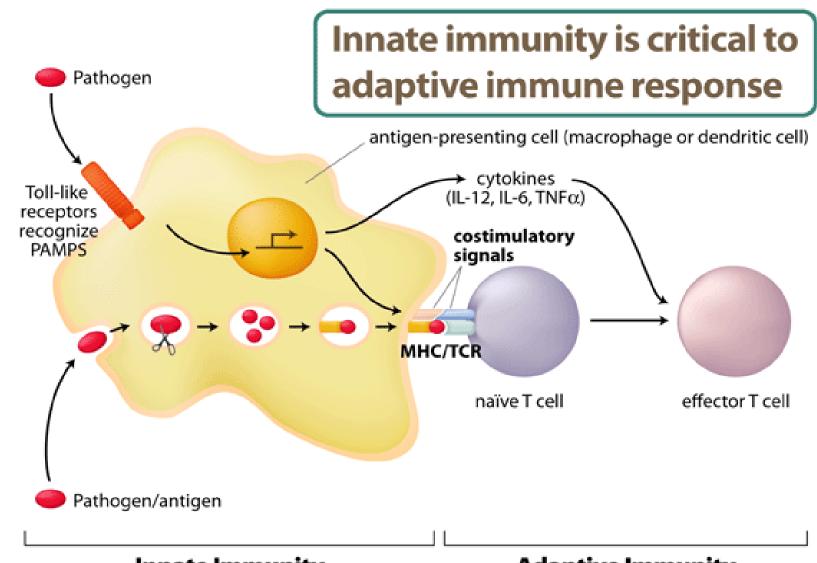

NK cell activated; killing of stressed cell


NK cell not activated; no cell killing NK cell activated; killing of infected cell

a Granule exocytosis pathway

b Death-receptor pathway

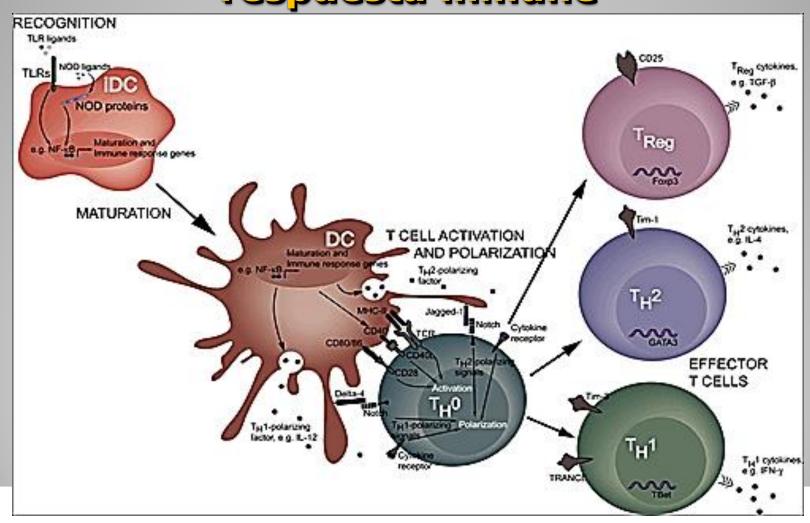


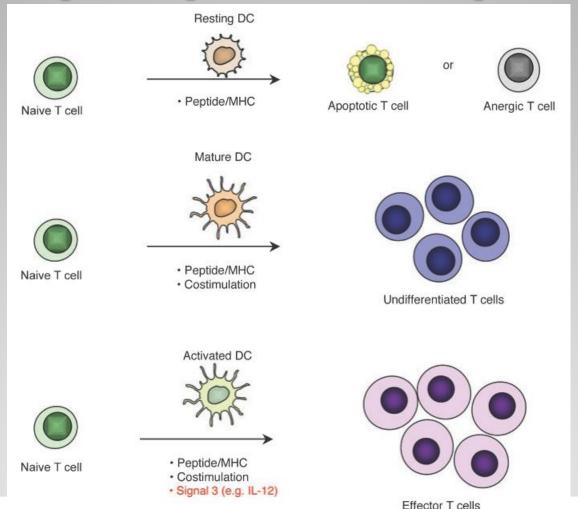


Lisis mediada por NK

Células Presentadoras de Antígeno Profesionales (APC)

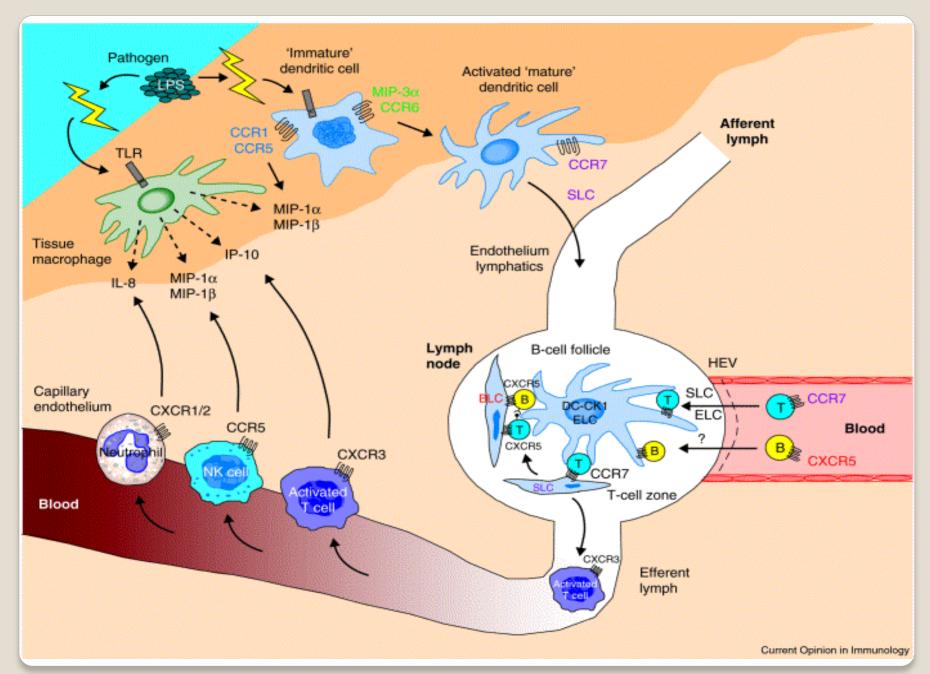
- Células Dendríticas (DC)
- Macrófagos
- Linfocitos B




Innate Immunity

Adaptive Immunity

Papel de las células dendríticas en la respuesta inmune



CD y respuesta adaptativa

Papel de las Quimiocinas en la conexión: inmunidad innata/inmunidad adquirida

- Eventos mediados por TLRs, reclutamiento de células dendríticas inmaduras hacia los sitios de entrada de los patógenos, traslado de estos a los nódulos linfáticos en donde activarán a células T vírgenes.
- La activación mediada por TLR induce la liberación de quimiocinas a partir de los macrófagos residentes y células dendríticas, reclutando diferentes grupos de leucocitos

Luster AD., Curr Opin Immunol, 2002